自然性在概念学习中的作用:一项计算研究

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Minds and Machines Pub Date : 2023-11-29 DOI:10.1007/s11023-023-09652-y
Igor Douven
{"title":"自然性在概念学习中的作用:一项计算研究","authors":"Igor Douven","doi":"10.1007/s11023-023-09652-y","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the learnability of natural concepts in the context of the conceptual spaces framework. Previous work proposed that natural concepts are represented by the cells of optimally partitioned similarity spaces, where optimality was defined in terms of a number of constraints. Among these is the constraint that optimally partitioned similarity spaces result in easily learnable concepts. While there is evidence that systems of concepts generally regarded as natural satisfy a number of the proposed optimality constraints, the connection between naturalness and learnability has been less well studied. To fill this gap, we conduct a computational study employing two standard models of concept learning. Applying these models to the learning of color concepts, we examine whether natural color concepts are more readily learned than nonnatural ones. Our findings warrant a positive answer to this question for both models employed, thus lending empirical support to the notion that learnability is a distinctive characteristic of natural concepts.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Naturalness in Concept Learning: A Computational Study\",\"authors\":\"Igor Douven\",\"doi\":\"10.1007/s11023-023-09652-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the learnability of natural concepts in the context of the conceptual spaces framework. Previous work proposed that natural concepts are represented by the cells of optimally partitioned similarity spaces, where optimality was defined in terms of a number of constraints. Among these is the constraint that optimally partitioned similarity spaces result in easily learnable concepts. While there is evidence that systems of concepts generally regarded as natural satisfy a number of the proposed optimality constraints, the connection between naturalness and learnability has been less well studied. To fill this gap, we conduct a computational study employing two standard models of concept learning. Applying these models to the learning of color concepts, we examine whether natural color concepts are more readily learned than nonnatural ones. Our findings warrant a positive answer to this question for both models employed, thus lending empirical support to the notion that learnability is a distinctive characteristic of natural concepts.</p>\",\"PeriodicalId\":51133,\"journal\":{\"name\":\"Minds and Machines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minds and Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11023-023-09652-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-023-09652-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文在概念空间框架下研究了自然概念的可学习性。以前的工作提出,自然概念是由最优划分的相似空间的细胞表示的,其中最优性是根据许多约束来定义的。其中最优划分的相似空间导致容易学习的概念的约束。虽然有证据表明,通常被认为是自然的概念系统满足了许多提出的最优性约束,但自然性和可学习性之间的联系却没有得到很好的研究。为了填补这一空白,我们使用两个标准的概念学习模型进行了计算研究。将这些模型应用于颜色概念的学习,我们研究了自然颜色概念是否比非自然颜色概念更容易学习。我们的研究结果为所采用的两个模型提供了一个积极的答案,从而为可学习性是自然概念的独特特征这一概念提供了实证支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Naturalness in Concept Learning: A Computational Study

This paper studies the learnability of natural concepts in the context of the conceptual spaces framework. Previous work proposed that natural concepts are represented by the cells of optimally partitioned similarity spaces, where optimality was defined in terms of a number of constraints. Among these is the constraint that optimally partitioned similarity spaces result in easily learnable concepts. While there is evidence that systems of concepts generally regarded as natural satisfy a number of the proposed optimality constraints, the connection between naturalness and learnability has been less well studied. To fill this gap, we conduct a computational study employing two standard models of concept learning. Applying these models to the learning of color concepts, we examine whether natural color concepts are more readily learned than nonnatural ones. Our findings warrant a positive answer to this question for both models employed, thus lending empirical support to the notion that learnability is a distinctive characteristic of natural concepts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minds and Machines
Minds and Machines 工程技术-计算机:人工智能
CiteScore
12.60
自引率
2.70%
发文量
30
审稿时长
>12 weeks
期刊介绍: Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science. Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios. By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.
期刊最新文献
Mapping the Ethics of Generative AI: A Comprehensive Scoping Review A Justifiable Investment in AI for Healthcare: Aligning Ambition with Reality fl-IRT-ing with Psychometrics to Improve NLP Bias Measurement Artificial Intelligence for the Internal Democracy of Political Parties A Causal Analysis of Harm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1