设计大气监测网络以核实国家二氧化碳排放量

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2023-11-15 DOI:10.1007/s13143-023-00343-3
Sojung Sim, Sujong Jeong, Chaerin Park, Jaewon Shin, Insun Kim, Sujin Ban, Cheol-Soo Lim
{"title":"设计大气监测网络以核实国家二氧化碳排放量","authors":"Sojung Sim,&nbsp;Sujong Jeong,&nbsp;Chaerin Park,&nbsp;Jaewon Shin,&nbsp;Insun Kim,&nbsp;Sujin Ban,&nbsp;Cheol-Soo Lim","doi":"10.1007/s13143-023-00343-3","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve net-zero carbon emissions by 2050, it is vital to prioritize climate action and monitor the progress of policies with accurate emission estimates. As CO<sub>2</sub> emission estimates can be independently verified using atmospheric CO<sub>2</sub> measurements, the need for optimal CO<sub>2</sub> monitoring networks has increased. This study proposed an experimental method for designing national-scale atmospheric CO<sub>2</sub> monitoring networks. We used gridded data for fossil fuel CO<sub>2</sub> emissions, facilitating the selection of emission grids as potential monitoring sites. First, we determined the appropriate number of CO<sub>2</sub> monitoring sites, which increased in proportion to the magnitude and variability of CO<sub>2</sub> emissions within the region. Subsequently, the emission grids corresponding to the region were arranged in descending order of emissions. Grids were then selected at regular intervals as potential monitoring sites, aligning with the predetermined number of sites. This selection process ensured that monitoring sites were evenly distributed, ranging from areas with high emissions to those with lower emissions. Lastly, as a verification step to assess the suitability of this potential network, a transport model simulating meteorological conditions was employed to evaluate its coverage to detect the influence of CO<sub>2</sub> emissions. This method was applied to South Korea, and 96 candidate monitoring sites were created. The optimal CO<sub>2</sub> monitoring network distributed evenly across South Korea could evaluate variations in CO<sub>2</sub> emissions. The simple monitoring network design method proposed in this study can accelerate the installation of a national CO<sub>2</sub> monitoring network, ultimately enabling the verification of CO<sub>2</sub> emissions and supporting climate policies.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 2","pages":"131 - 141"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an Atmospheric Monitoring Network to Verify National CO2 Emissions\",\"authors\":\"Sojung Sim,&nbsp;Sujong Jeong,&nbsp;Chaerin Park,&nbsp;Jaewon Shin,&nbsp;Insun Kim,&nbsp;Sujin Ban,&nbsp;Cheol-Soo Lim\",\"doi\":\"10.1007/s13143-023-00343-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To achieve net-zero carbon emissions by 2050, it is vital to prioritize climate action and monitor the progress of policies with accurate emission estimates. As CO<sub>2</sub> emission estimates can be independently verified using atmospheric CO<sub>2</sub> measurements, the need for optimal CO<sub>2</sub> monitoring networks has increased. This study proposed an experimental method for designing national-scale atmospheric CO<sub>2</sub> monitoring networks. We used gridded data for fossil fuel CO<sub>2</sub> emissions, facilitating the selection of emission grids as potential monitoring sites. First, we determined the appropriate number of CO<sub>2</sub> monitoring sites, which increased in proportion to the magnitude and variability of CO<sub>2</sub> emissions within the region. Subsequently, the emission grids corresponding to the region were arranged in descending order of emissions. Grids were then selected at regular intervals as potential monitoring sites, aligning with the predetermined number of sites. This selection process ensured that monitoring sites were evenly distributed, ranging from areas with high emissions to those with lower emissions. Lastly, as a verification step to assess the suitability of this potential network, a transport model simulating meteorological conditions was employed to evaluate its coverage to detect the influence of CO<sub>2</sub> emissions. This method was applied to South Korea, and 96 candidate monitoring sites were created. The optimal CO<sub>2</sub> monitoring network distributed evenly across South Korea could evaluate variations in CO<sub>2</sub> emissions. The simple monitoring network design method proposed in this study can accelerate the installation of a national CO<sub>2</sub> monitoring network, ultimately enabling the verification of CO<sub>2</sub> emissions and supporting climate policies.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 2\",\"pages\":\"131 - 141\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00343-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00343-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了到2050年实现净零碳排放,必须优先考虑气候行动,并根据准确的排放估算监测政策进展。由于CO2排放估算可以使用大气CO2测量独立验证,因此对最佳CO2监测网络的需求增加了。本研究提出了一种设计国家级大气CO2监测网络的实验方法。我们对化石燃料二氧化碳排放使用网格数据,方便选择排放网格作为潜在的监测点。首先,我们确定了二氧化碳监测点的适当数量,这些监测点的数量与区域内二氧化碳排放的大小和变异性成比例增加。随后,按排放降序排列区域对应的排放网格。然后定期选择网格作为潜在的监测站点,与预定的站点数量对齐。这一选择过程确保了监测点的均匀分布,从高排放地区到低排放地区。最后,作为评估该潜在网络适用性的验证步骤,采用模拟气象条件的运输模型来评估其覆盖范围,以检测CO2排放的影响。将该方法应用于韩国,建立了96个候选监测点。在韩国均匀分布的最佳二氧化碳监测网络可以评估二氧化碳排放的变化。本研究提出的简单的监测网络设计方法可以加速国家二氧化碳监测网络的安装,最终实现二氧化碳排放的验证和气候政策的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing an Atmospheric Monitoring Network to Verify National CO2 Emissions

To achieve net-zero carbon emissions by 2050, it is vital to prioritize climate action and monitor the progress of policies with accurate emission estimates. As CO2 emission estimates can be independently verified using atmospheric CO2 measurements, the need for optimal CO2 monitoring networks has increased. This study proposed an experimental method for designing national-scale atmospheric CO2 monitoring networks. We used gridded data for fossil fuel CO2 emissions, facilitating the selection of emission grids as potential monitoring sites. First, we determined the appropriate number of CO2 monitoring sites, which increased in proportion to the magnitude and variability of CO2 emissions within the region. Subsequently, the emission grids corresponding to the region were arranged in descending order of emissions. Grids were then selected at regular intervals as potential monitoring sites, aligning with the predetermined number of sites. This selection process ensured that monitoring sites were evenly distributed, ranging from areas with high emissions to those with lower emissions. Lastly, as a verification step to assess the suitability of this potential network, a transport model simulating meteorological conditions was employed to evaluate its coverage to detect the influence of CO2 emissions. This method was applied to South Korea, and 96 candidate monitoring sites were created. The optimal CO2 monitoring network distributed evenly across South Korea could evaluate variations in CO2 emissions. The simple monitoring network design method proposed in this study can accelerate the installation of a national CO2 monitoring network, ultimately enabling the verification of CO2 emissions and supporting climate policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1