{"title":"FastPtx:使用 Pytorch 自分化技术快速联合设计 pTx 射频和梯度脉冲的多功能工具箱","authors":"Dario Bosch, Klaus Scheffler","doi":"10.1007/s10334-023-01134-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch’s autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for <span>\\(B_1^+\\)</span> mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":"48 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FastPtx: a versatile toolbox for rapid, joint design of pTx RF and gradient pulses using Pytorch’s autodifferentiation\",\"authors\":\"Dario Bosch, Klaus Scheffler\",\"doi\":\"10.1007/s10334-023-01134-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Objective</h3><p>With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch’s autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for <span>\\\\(B_1^+\\\\)</span> mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-023-01134-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-023-01134-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
FastPtx: a versatile toolbox for rapid, joint design of pTx RF and gradient pulses using Pytorch’s autodifferentiation
Objective
With modern optimization methods, free optimization of parallel transmit pulses together with their gradient waveforms can be performed on-line within a short time. A toolbox which uses PyTorch’s autodifferentiation for simultaneous optimization of RF and gradient waveforms is presented and its performance is evaluated.
Methods
MR measurements were performed on a 9.4T MRI scanner using a 3D saturated single-shot turboFlash sequence for \(B_1^+\) mapping. RF pulse simulation and optimization were done using a Python toolbox and a dedicated server. An RF- and Gradient pulse design toolbox was developed, including a cost function to balance different metrics and respect hardware and regulatory limits. Pulse performance was evaluated in GRE and MPRAGE imaging. Pulses for non-selective and for slab-selective excitation were designed.
Results
Universal pulses for non-selective excitation reduced the flip angle error to an NRMSE of (12.3±1.7)% relative to the targeted flip angle in simulations, compared to (42.0±1.4)% in CP mode. The tailored pulses performed best, resulting in a narrow flip angle distribution with NRMSE of (8.2±1.0)%. The tailored pulses could be created in only 66 s, making it feasible to design them during an experiment. A 90° pulse was designed as preparation pulse for a satTFL sequence and achieved a NRMSE of 7.1%. We showed that both MPRAGE and GRE imaging benefited from the pTx pulses created with our toolbox.
Conclusion
The pTx pulse design toolbox can freely optimize gradient and pTx RF waveforms in a short time. This allows for tailoring high-quality pulses in just over a minute.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.