Ming-xia Zhou , Wen-hua Zhou , Xiang Long , Shao-kuan Zhu , Peng Xu , Quan-sheng OuYang , Bin Shi , Jiao-jing Shao
{"title":"可防止多硫化物穿梭的二维蒙脱石-碳纳米管互连多孔网络","authors":"Ming-xia Zhou , Wen-hua Zhou , Xiang Long , Shao-kuan Zhu , Peng Xu , Quan-sheng OuYang , Bin Shi , Jiao-jing Shao","doi":"10.1016/S1872-5805(23)60783-8","DOIUrl":null,"url":null,"abstract":"<div><p>A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1 373 mAh g<sup>−1</sup> at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling\",\"authors\":\"Ming-xia Zhou , Wen-hua Zhou , Xiang Long , Shao-kuan Zhu , Peng Xu , Quan-sheng OuYang , Bin Shi , Jiao-jing Shao\",\"doi\":\"10.1016/S1872-5805(23)60783-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1 373 mAh g<sup>−1</sup> at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580523607838\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607838","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling
A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1 373 mAh g−1 at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.