{"title":"基于 Copula 的数据驱动多点模拟法","authors":"Babak Sohrabian , Abdullah Erhan Tercan","doi":"10.1016/j.spasta.2023.100802","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple-point simulation is a commonly used method in modeling complex curvilinear structures. The method is based on the application of training images that are open to manipulation. The present study introduces a new data-driven multiple-point simulation method that derives multiple point statistics directly from sparse data using copulas and applies them in simulation of complex mineral deposits. This method is based on simplification of N-dimensional copulas by its underlying two-dimensional copulas and taking advantage of conditional independence assumption to integrate information from different sources. The method was compared to Filtersim, a conventional multiple-point geostatistical method, through two synthetic data sets. Reproduction of cumulative distribution function, variogram, N-point connectivity, and visual patterns were considered in comparison. The copula-based multiple-point simulation (CMPS) method was implemented using trivial parts (almost 4%) of the synthetic data to extract required statistics while Filtersim was performed by giving the target image (100% data) as training image. Despite overwhelming data use in Filtersim, the CMPS showed compatible results to it. Application to synthetic data indicated that the method is a promising tool in the simulation of deposits with sparse data. The CMPS were applied in the simulation of two mineral deposits: (1) a porphyry copper deposit and (2) a magmatic iron deposit.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000775/pdfft?md5=f3c30289a955eabe0dfa21b5ac6ce197&pid=1-s2.0-S2211675323000775-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Copula-Based Data-Driven Multiple-Point Simulation Method\",\"authors\":\"Babak Sohrabian , Abdullah Erhan Tercan\",\"doi\":\"10.1016/j.spasta.2023.100802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiple-point simulation is a commonly used method in modeling complex curvilinear structures. The method is based on the application of training images that are open to manipulation. The present study introduces a new data-driven multiple-point simulation method that derives multiple point statistics directly from sparse data using copulas and applies them in simulation of complex mineral deposits. This method is based on simplification of N-dimensional copulas by its underlying two-dimensional copulas and taking advantage of conditional independence assumption to integrate information from different sources. The method was compared to Filtersim, a conventional multiple-point geostatistical method, through two synthetic data sets. Reproduction of cumulative distribution function, variogram, N-point connectivity, and visual patterns were considered in comparison. The copula-based multiple-point simulation (CMPS) method was implemented using trivial parts (almost 4%) of the synthetic data to extract required statistics while Filtersim was performed by giving the target image (100% data) as training image. Despite overwhelming data use in Filtersim, the CMPS showed compatible results to it. Application to synthetic data indicated that the method is a promising tool in the simulation of deposits with sparse data. The CMPS were applied in the simulation of two mineral deposits: (1) a porphyry copper deposit and (2) a magmatic iron deposit.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000775/pdfft?md5=f3c30289a955eabe0dfa21b5ac6ce197&pid=1-s2.0-S2211675323000775-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000775\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000775","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiple-point simulation is a commonly used method in modeling complex curvilinear structures. The method is based on the application of training images that are open to manipulation. The present study introduces a new data-driven multiple-point simulation method that derives multiple point statistics directly from sparse data using copulas and applies them in simulation of complex mineral deposits. This method is based on simplification of N-dimensional copulas by its underlying two-dimensional copulas and taking advantage of conditional independence assumption to integrate information from different sources. The method was compared to Filtersim, a conventional multiple-point geostatistical method, through two synthetic data sets. Reproduction of cumulative distribution function, variogram, N-point connectivity, and visual patterns were considered in comparison. The copula-based multiple-point simulation (CMPS) method was implemented using trivial parts (almost 4%) of the synthetic data to extract required statistics while Filtersim was performed by giving the target image (100% data) as training image. Despite overwhelming data use in Filtersim, the CMPS showed compatible results to it. Application to synthetic data indicated that the method is a promising tool in the simulation of deposits with sparse data. The CMPS were applied in the simulation of two mineral deposits: (1) a porphyry copper deposit and (2) a magmatic iron deposit.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.