Fulai Liu, Dongbao Qin, Xubin Li, Yufeng Du, Xiuquan Dou, Ruiyan Du
{"title":"通过残差卷积神经网络实现鲁棒自适应波束成形","authors":"Fulai Liu, Dongbao Qin, Xubin Li, Yufeng Du, Xiuquan Dou, Ruiyan Du","doi":"10.1017/s175907872300140x","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the covariance matrix includes the desired signal and the signal steer vector mismatches will degrade the beamforming performance, an effective robust adaptive beamforming (RAB) approach is presented in this paper based on a residual convolutional neural network (RAB-RCNN). In the presented method, the RAB-RCNN model is designed by introducing a residual unit, which can extract the deeper features from the signal sample covariance matrix. Residual noise elimination and interferences power estimation are utilized to reconstruct the desired signal covariance matrix, and correct the mismatched steering vector (SV) by the eigenvalue decomposition of the reconstructed desired signal covariance matrix. The projection method is utilized to redesign the signal interference-plus-noise covariance matrix. Furthermore, the beamforming weight vector is calculated with the two parameters obtained before and used as the label of the RAB-RCNN model, The trained model can rapidly and precisely output the predicted beamforming weight vector without complex matrix operations, including the matrix inversion of the signal covariance matrix, so that the calculation time can be reduced for beamforming. Simulations demonstrate the robustness of the presented approach against SV mismatches due to the direction-of-arrival estimation error, sensor position error, and local scattering interference.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"72 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust adaptive beamforming via residual convolutional neural network\",\"authors\":\"Fulai Liu, Dongbao Qin, Xubin Li, Yufeng Du, Xiuquan Dou, Ruiyan Du\",\"doi\":\"10.1017/s175907872300140x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem that the covariance matrix includes the desired signal and the signal steer vector mismatches will degrade the beamforming performance, an effective robust adaptive beamforming (RAB) approach is presented in this paper based on a residual convolutional neural network (RAB-RCNN). In the presented method, the RAB-RCNN model is designed by introducing a residual unit, which can extract the deeper features from the signal sample covariance matrix. Residual noise elimination and interferences power estimation are utilized to reconstruct the desired signal covariance matrix, and correct the mismatched steering vector (SV) by the eigenvalue decomposition of the reconstructed desired signal covariance matrix. The projection method is utilized to redesign the signal interference-plus-noise covariance matrix. Furthermore, the beamforming weight vector is calculated with the two parameters obtained before and used as the label of the RAB-RCNN model, The trained model can rapidly and precisely output the predicted beamforming weight vector without complex matrix operations, including the matrix inversion of the signal covariance matrix, so that the calculation time can be reduced for beamforming. Simulations demonstrate the robustness of the presented approach against SV mismatches due to the direction-of-arrival estimation error, sensor position error, and local scattering interference.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s175907872300140x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s175907872300140x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust adaptive beamforming via residual convolutional neural network
Aiming at the problem that the covariance matrix includes the desired signal and the signal steer vector mismatches will degrade the beamforming performance, an effective robust adaptive beamforming (RAB) approach is presented in this paper based on a residual convolutional neural network (RAB-RCNN). In the presented method, the RAB-RCNN model is designed by introducing a residual unit, which can extract the deeper features from the signal sample covariance matrix. Residual noise elimination and interferences power estimation are utilized to reconstruct the desired signal covariance matrix, and correct the mismatched steering vector (SV) by the eigenvalue decomposition of the reconstructed desired signal covariance matrix. The projection method is utilized to redesign the signal interference-plus-noise covariance matrix. Furthermore, the beamforming weight vector is calculated with the two parameters obtained before and used as the label of the RAB-RCNN model, The trained model can rapidly and precisely output the predicted beamforming weight vector without complex matrix operations, including the matrix inversion of the signal covariance matrix, so that the calculation time can be reduced for beamforming. Simulations demonstrate the robustness of the presented approach against SV mismatches due to the direction-of-arrival estimation error, sensor position error, and local scattering interference.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.