{"title":"基于过氧化氢/过乙酸和次氯酸钠的食品级消毒剂会干扰大肠杆菌、绿脓杆菌、金黄色葡萄球菌和李斯特菌在不同表面粗糙度的不锈钢上的附着力","authors":"Ružica Tomičić, Zorica Tomičić, Milica Nićetin, Violeta Knežević, Sunčica Kocić-Tanackov, Peter Raspor","doi":"10.1080/08927014.2023.2288886","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differ...","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"79 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness\",\"authors\":\"Ružica Tomičić, Zorica Tomičić, Milica Nićetin, Violeta Knežević, Sunčica Kocić-Tanackov, Peter Raspor\",\"doi\":\"10.1080/08927014.2023.2288886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differ...\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2288886\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2288886","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness
This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differ...
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.