{"title":"具有自动参数优化和跨数据集适应性的高精度汽车跟随模型","authors":"Pinpin Qin, Shenglin Bin, Yanzhi Pang, Xing Li, Fumao Wu, Shiwei Liu","doi":"10.3390/wevj14120341","DOIUrl":null,"url":null,"abstract":"Despite the significant impact of network hyperparameters on deep learning car-following models, there has been relatively little research on network hyperparameters of deep learning car-following models. Therefore, this study proposes a car-following model that combines particle swarm optimization (PSO) and gated recurrent unit (GRU) networks. The PSO-GRU car-following model is trained and tested using data from the natural driving database. The results demonstrate that compared to the intelligent driver model (IDM) and the GRU car-following model, the PSO-GRU car-following model reduces the mean squared error (MSE) for the speed simulation of following vehicles by 88.36% and 72.92%, respectively, and reduces the mean absolute percentage error (MAPE) by 64.81% and 50.14%, respectively, indicating a higher prediction accuracy. Dataset 3 from the drone video trajectory database of Southeast University and NGSIM’s I-80 dataset are used to study the car-following model’s cross-dataset adaptability, that is, to verify its transferability. Compared to the GRU car-following model, the PSO-GRU car-following model reduces the standard deviation of the test results by 60.64% and 32.89%, highlighting its more robust prediction stability and better transferability. Verifying the ability of the car-following model to produce the stop-and-go phenomenon can evaluate its transferability more comprehensively. The PSO-GRU car-following model outperforms the GRU car-following model in creating stop-and-go sensations through platoon simulation tests, demonstrating its superior transferability. Therefore, the proposed PSO-GRU car-following model has higher prediction accuracy and cross-dataset adaptability compared to other car-following models.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"15 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Precision Car-Following Model with Automatic Parameter Optimization and Cross-Dataset Adaptability\",\"authors\":\"Pinpin Qin, Shenglin Bin, Yanzhi Pang, Xing Li, Fumao Wu, Shiwei Liu\",\"doi\":\"10.3390/wevj14120341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the significant impact of network hyperparameters on deep learning car-following models, there has been relatively little research on network hyperparameters of deep learning car-following models. Therefore, this study proposes a car-following model that combines particle swarm optimization (PSO) and gated recurrent unit (GRU) networks. The PSO-GRU car-following model is trained and tested using data from the natural driving database. The results demonstrate that compared to the intelligent driver model (IDM) and the GRU car-following model, the PSO-GRU car-following model reduces the mean squared error (MSE) for the speed simulation of following vehicles by 88.36% and 72.92%, respectively, and reduces the mean absolute percentage error (MAPE) by 64.81% and 50.14%, respectively, indicating a higher prediction accuracy. Dataset 3 from the drone video trajectory database of Southeast University and NGSIM’s I-80 dataset are used to study the car-following model’s cross-dataset adaptability, that is, to verify its transferability. Compared to the GRU car-following model, the PSO-GRU car-following model reduces the standard deviation of the test results by 60.64% and 32.89%, highlighting its more robust prediction stability and better transferability. Verifying the ability of the car-following model to produce the stop-and-go phenomenon can evaluate its transferability more comprehensively. The PSO-GRU car-following model outperforms the GRU car-following model in creating stop-and-go sensations through platoon simulation tests, demonstrating its superior transferability. Therefore, the proposed PSO-GRU car-following model has higher prediction accuracy and cross-dataset adaptability compared to other car-following models.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14120341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14120341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A High-Precision Car-Following Model with Automatic Parameter Optimization and Cross-Dataset Adaptability
Despite the significant impact of network hyperparameters on deep learning car-following models, there has been relatively little research on network hyperparameters of deep learning car-following models. Therefore, this study proposes a car-following model that combines particle swarm optimization (PSO) and gated recurrent unit (GRU) networks. The PSO-GRU car-following model is trained and tested using data from the natural driving database. The results demonstrate that compared to the intelligent driver model (IDM) and the GRU car-following model, the PSO-GRU car-following model reduces the mean squared error (MSE) for the speed simulation of following vehicles by 88.36% and 72.92%, respectively, and reduces the mean absolute percentage error (MAPE) by 64.81% and 50.14%, respectively, indicating a higher prediction accuracy. Dataset 3 from the drone video trajectory database of Southeast University and NGSIM’s I-80 dataset are used to study the car-following model’s cross-dataset adaptability, that is, to verify its transferability. Compared to the GRU car-following model, the PSO-GRU car-following model reduces the standard deviation of the test results by 60.64% and 32.89%, highlighting its more robust prediction stability and better transferability. Verifying the ability of the car-following model to produce the stop-and-go phenomenon can evaluate its transferability more comprehensively. The PSO-GRU car-following model outperforms the GRU car-following model in creating stop-and-go sensations through platoon simulation tests, demonstrating its superior transferability. Therefore, the proposed PSO-GRU car-following model has higher prediction accuracy and cross-dataset adaptability compared to other car-following models.