{"title":"带故障主动相随机化的量子密钥分发的密钥速率边界","authors":"Xoel Sixto, Guillermo Currás-Lorenzo, Kiyoshi Tamaki, Marcos Curty","doi":"10.1140/epjqt/s40507-023-00210-0","DOIUrl":null,"url":null,"abstract":"<div><p>Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly random. This might be difficult to guarantee in practice, due to inevitable device imperfections and/or the use of an external phase modulator for phase randomization in an active setup, which limits the possible selected phases to a finite set. Here, we investigate the security of decoy-state QKD when the phase is actively randomized by faulty devices, and show that this technique is quite robust to deviations from the ideal uniformly random scenario. For this, we combine a novel parameter estimation technique based on semi-definite programming, with the use of basis mismatched events, to tightly estimate the parameters that determine the achievable secret key rate. In doing so, we demonstrate that our analysis can significantly outperform previous results that address more restricted scenarios.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00210-0","citationCount":"0","resultStr":"{\"title\":\"Secret key rate bounds for quantum key distribution with faulty active phase randomization\",\"authors\":\"Xoel Sixto, Guillermo Currás-Lorenzo, Kiyoshi Tamaki, Marcos Curty\",\"doi\":\"10.1140/epjqt/s40507-023-00210-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly random. This might be difficult to guarantee in practice, due to inevitable device imperfections and/or the use of an external phase modulator for phase randomization in an active setup, which limits the possible selected phases to a finite set. Here, we investigate the security of decoy-state QKD when the phase is actively randomized by faulty devices, and show that this technique is quite robust to deviations from the ideal uniformly random scenario. For this, we combine a novel parameter estimation technique based on semi-definite programming, with the use of basis mismatched events, to tightly estimate the parameters that determine the achievable secret key rate. In doing so, we demonstrate that our analysis can significantly outperform previous results that address more restricted scenarios.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00210-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00210-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00210-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Secret key rate bounds for quantum key distribution with faulty active phase randomization
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly random. This might be difficult to guarantee in practice, due to inevitable device imperfections and/or the use of an external phase modulator for phase randomization in an active setup, which limits the possible selected phases to a finite set. Here, we investigate the security of decoy-state QKD when the phase is actively randomized by faulty devices, and show that this technique is quite robust to deviations from the ideal uniformly random scenario. For this, we combine a novel parameter estimation technique based on semi-definite programming, with the use of basis mismatched events, to tightly estimate the parameters that determine the achievable secret key rate. In doing so, we demonstrate that our analysis can significantly outperform previous results that address more restricted scenarios.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.