稀聚合物溶液湍流泰勒-库埃特流动中的最大阻力增强渐近线

IF 2.7 2区 工程技术 Q2 MECHANICS Journal of Non-Newtonian Fluid Mechanics Pub Date : 2023-12-14 DOI:10.1016/j.jnnfm.2023.105172
Fenghui Lin , Jiaxing Song , Nansheng Liu , Zhenhua Wan , Xi-Yun Lu , Bamin Khomami
{"title":"稀聚合物溶液湍流泰勒-库埃特流动中的最大阻力增强渐近线","authors":"Fenghui Lin ,&nbsp;Jiaxing Song ,&nbsp;Nansheng Liu ,&nbsp;Zhenhua Wan ,&nbsp;Xi-Yun Lu ,&nbsp;Bamin Khomami","doi":"10.1016/j.jnnfm.2023.105172","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Direct numerical simulations in a wide-gap turbulent viscoelastic Taylor–Couette flow in the </span>Reynolds number (</span><span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>) range of 1500 to 8000 reveals the existence of a maximum drag enhancement (MDE) asymptote. The statistical properties associated with the turbulent and polymer dynamics demonstrate that the turbulent drag enhances with the increase of the Weissenberg number (<span><math><mrow><mi>W</mi><mi>i</mi></mrow></math></span>) and eventually saturates above a critical <span><math><mrow><mi>W</mi><mi>i</mi></mrow></math></span><span>, namely, the flow reaches the MDE state. The mean velocity profile in MDE state closely follows a logarithmic-like law with an identical slope (</span><span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>32</mn></mrow></math></span>) and a <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span><span>-dependent intercept. A detailed analysis of flow structures reveals that the MDE asymptote results from the creation and eventual saturation of small-scale elastic and inertio-elastic Görtler vortices in the inner- and outer-wall regions, respectively. These vortical structures arise due to competing effects of polymer-induced stresses that either suppress or promote turbulent vortices. A close examination of competing forces in the azimuthal direction<span><span> shows that the ratio of polymeric to turbulent stresses reaches a large plateau, underscoring the elastic nature of the MDE state. Moreover, the energy production mechanism in the MDE state further supports: (1) the universal </span>interplay between polymers and turbulent vortices in a broad range of curvilinear and planar turbulent flows, and (2) the fact that the elastically induced asymptotic saturation of drag modification is an inherent property of elasticity-driven and/or elasto-inertial turbulence flow states. Overall, this study provides concrete evidence for our earlier postulate that asymptotic flow states in unidirectional turbulent viscoelastic flows are of elastic nature.</span></span></p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"323 ","pages":"Article 105172"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum drag enhancement asymptote in turbulent Taylor–Couette flow of dilute polymeric solutions\",\"authors\":\"Fenghui Lin ,&nbsp;Jiaxing Song ,&nbsp;Nansheng Liu ,&nbsp;Zhenhua Wan ,&nbsp;Xi-Yun Lu ,&nbsp;Bamin Khomami\",\"doi\":\"10.1016/j.jnnfm.2023.105172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Direct numerical simulations in a wide-gap turbulent viscoelastic Taylor–Couette flow in the </span>Reynolds number (</span><span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>) range of 1500 to 8000 reveals the existence of a maximum drag enhancement (MDE) asymptote. The statistical properties associated with the turbulent and polymer dynamics demonstrate that the turbulent drag enhances with the increase of the Weissenberg number (<span><math><mrow><mi>W</mi><mi>i</mi></mrow></math></span>) and eventually saturates above a critical <span><math><mrow><mi>W</mi><mi>i</mi></mrow></math></span><span>, namely, the flow reaches the MDE state. The mean velocity profile in MDE state closely follows a logarithmic-like law with an identical slope (</span><span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>32</mn></mrow></math></span>) and a <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span><span>-dependent intercept. A detailed analysis of flow structures reveals that the MDE asymptote results from the creation and eventual saturation of small-scale elastic and inertio-elastic Görtler vortices in the inner- and outer-wall regions, respectively. These vortical structures arise due to competing effects of polymer-induced stresses that either suppress or promote turbulent vortices. A close examination of competing forces in the azimuthal direction<span><span> shows that the ratio of polymeric to turbulent stresses reaches a large plateau, underscoring the elastic nature of the MDE state. Moreover, the energy production mechanism in the MDE state further supports: (1) the universal </span>interplay between polymers and turbulent vortices in a broad range of curvilinear and planar turbulent flows, and (2) the fact that the elastically induced asymptotic saturation of drag modification is an inherent property of elasticity-driven and/or elasto-inertial turbulence flow states. Overall, this study provides concrete evidence for our earlier postulate that asymptotic flow states in unidirectional turbulent viscoelastic flows are of elastic nature.</span></span></p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"323 \",\"pages\":\"Article 105172\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025723001854\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025723001854","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在雷诺数(Re)为 1500 到 8000 的范围内,对宽间隙湍流粘弹性 Taylor-Couette 流进行直接数值模拟,发现存在最大阻力增强(MDE)渐近线。与湍流和聚合物动力学相关的统计特性表明,湍流阻力随着韦森伯格数(Wi)的增加而增强,并最终在临界 Wi 以上达到饱和,即流动达到 MDE 状态。MDE 状态下的平均速度剖面密切遵循类似对数的规律,具有相同的斜率(κK=2.32)和与 Re 有关的截距。对流动结构的详细分析显示,MDE 渐近线是由内壁和外壁区域的小尺度弹性和惯性弹性哥特勒涡旋分别产生并最终饱和造成的。这些涡旋结构的产生是由于聚合物诱导应力的竞争效应,这些应力或抑制或促进湍流涡旋。对方位角方向上的竞争作用力进行的仔细研究表明,聚合物应力与湍流应力的比率达到了一个很大的高点,这突出表明了 MDE 状态的弹性性质。此外,MDE 状态下的能量产生机制进一步证明了以下几点(1) 在广泛的曲线和平面湍流中,聚合物与湍流涡旋之间普遍存在相互作用;(2) 弹性引起的阻力修正渐近饱和是弹性驱动和/或弹性惯性湍流状态的固有特性。总之,这项研究为我们之前的假设提供了具体证据,即单向湍流粘弹性流动中的渐近流动状态具有弹性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum drag enhancement asymptote in turbulent Taylor–Couette flow of dilute polymeric solutions

Direct numerical simulations in a wide-gap turbulent viscoelastic Taylor–Couette flow in the Reynolds number (Re) range of 1500 to 8000 reveals the existence of a maximum drag enhancement (MDE) asymptote. The statistical properties associated with the turbulent and polymer dynamics demonstrate that the turbulent drag enhances with the increase of the Weissenberg number (Wi) and eventually saturates above a critical Wi, namely, the flow reaches the MDE state. The mean velocity profile in MDE state closely follows a logarithmic-like law with an identical slope (κK=2.32) and a Re-dependent intercept. A detailed analysis of flow structures reveals that the MDE asymptote results from the creation and eventual saturation of small-scale elastic and inertio-elastic Görtler vortices in the inner- and outer-wall regions, respectively. These vortical structures arise due to competing effects of polymer-induced stresses that either suppress or promote turbulent vortices. A close examination of competing forces in the azimuthal direction shows that the ratio of polymeric to turbulent stresses reaches a large plateau, underscoring the elastic nature of the MDE state. Moreover, the energy production mechanism in the MDE state further supports: (1) the universal interplay between polymers and turbulent vortices in a broad range of curvilinear and planar turbulent flows, and (2) the fact that the elastically induced asymptotic saturation of drag modification is an inherent property of elasticity-driven and/or elasto-inertial turbulence flow states. Overall, this study provides concrete evidence for our earlier postulate that asymptotic flow states in unidirectional turbulent viscoelastic flows are of elastic nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
期刊最新文献
A lattice Boltzmann flux solver with log-conformation representation for the simulations of viscoelastic flows at high Weissenberg numbers Analysis of the shear thickening behavior of a fumed silica suspension using QL-LAOS approach Suppression and augmentation in vortex shedding frequency due to fluid elasticity The influence of thixotropy on bubble growth in thixotropic yield stress fluids: Insights from numerical simulations Viscoelastic model hierarchy for fiber melt spinning of semi-crystalline polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1