Pablo Redruello-Guerrero, Paula Cordoba, Antonio Láinez-Ramos-Bossini, Mario Rivera, Cristina Mesas, Raul Ortiz, Jose Prados, Gloria Perazzoli
{"title":"多柔比星脂质体在非小细胞肺癌中的体外和体内试验:系统综述","authors":"Pablo Redruello-Guerrero, Paula Cordoba, Antonio Láinez-Ramos-Bossini, Mario Rivera, Cristina Mesas, Raul Ortiz, Jose Prados, Gloria Perazzoli","doi":"10.2174/0115672018272162231116093143","DOIUrl":null,"url":null,"abstract":"Background: Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. Methods: A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. Results: The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. Conclusion: Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"292 1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review\",\"authors\":\"Pablo Redruello-Guerrero, Paula Cordoba, Antonio Láinez-Ramos-Bossini, Mario Rivera, Cristina Mesas, Raul Ortiz, Jose Prados, Gloria Perazzoli\",\"doi\":\"10.2174/0115672018272162231116093143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. Methods: A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. Results: The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. Conclusion: Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\"292 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018272162231116093143\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115672018272162231116093143","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review
Background: Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. Methods: A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. Results: The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. Conclusion: Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.