合金化对纳米级三元半导体化合物带隙能的影响

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2023-12-20 DOI:10.1007/s10825-023-02115-8
Monika Goyal
{"title":"合金化对纳米级三元半导体化合物带隙能的影响","authors":"Monika Goyal","doi":"10.1007/s10825-023-02115-8","DOIUrl":null,"url":null,"abstract":"<p>The variation in bandgap energy with decreased size and varying composition of alloys has attracted the attention of researchers over the past few decades. In the present paper, a simple unified model is presented to study the impact of alloying on the bandgap energy of ternary semiconducting compounds with varying composition. The energy bandgap is determined for semiconducting homogeneous nano-compounds with zinc-blende and wurtzite structure, including Zn<sub><i>x</i></sub>Cd<sub>1−<i>x</i></sub>S, Zn<sub><i>x</i></sub>Cd<sub>1−<i>x</i></sub>Se, Cd(S)<sub><i>x</i></sub>(Se)<sub>1−<i>x</i></sub>, and Cd(Se)<sub><i>x</i></sub>(Te)<sub>1−<i>x</i></sub>. The model does not involve any adjustable parameters. The study provides insight into the impact of size, dimension, and composition on the energy bandgap of the material and the possibility of tuning the optical properties of semiconducting compounds by alloying, as alloyed compounds could be more stable and have higher luminescence than single semiconducting nanocrystal with a narrower energy bandgap. The model predictions are in good accord with the available experimental and simulated data.</p>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of alloying on the bandgap energy in nano-sized ternary semiconducting compounds\",\"authors\":\"Monika Goyal\",\"doi\":\"10.1007/s10825-023-02115-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The variation in bandgap energy with decreased size and varying composition of alloys has attracted the attention of researchers over the past few decades. In the present paper, a simple unified model is presented to study the impact of alloying on the bandgap energy of ternary semiconducting compounds with varying composition. The energy bandgap is determined for semiconducting homogeneous nano-compounds with zinc-blende and wurtzite structure, including Zn<sub><i>x</i></sub>Cd<sub>1−<i>x</i></sub>S, Zn<sub><i>x</i></sub>Cd<sub>1−<i>x</i></sub>Se, Cd(S)<sub><i>x</i></sub>(Se)<sub>1−<i>x</i></sub>, and Cd(Se)<sub><i>x</i></sub>(Te)<sub>1−<i>x</i></sub>. The model does not involve any adjustable parameters. The study provides insight into the impact of size, dimension, and composition on the energy bandgap of the material and the possibility of tuning the optical properties of semiconducting compounds by alloying, as alloyed compounds could be more stable and have higher luminescence than single semiconducting nanocrystal with a narrower energy bandgap. The model predictions are in good accord with the available experimental and simulated data.</p>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10825-023-02115-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10825-023-02115-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,带隙能随合金尺寸减小和成分变化而变化的问题一直吸引着研究人员的关注。本文提出了一个简单的统一模型来研究合金化对不同成分的三元半导体化合物带隙能的影响。该模型测定了具有锌蓝晶和钨锆晶结构的半导体均相纳米化合物的能带隙,包括 ZnxCd1-xS、ZnxCd1-xSe、Cd(S)x(Se)1-x 和 Cd(Se)x(Te)1-x。该模型不涉及任何可调参数。该研究深入探讨了尺寸、维度和成分对材料能带隙的影响,以及通过合金化调整半导体化合物光学特性的可能性,因为与能带隙较窄的单个半导体纳米晶体相比,合金化化合物可能更稳定,发光强度更高。模型预测与现有的实验和模拟数据十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of alloying on the bandgap energy in nano-sized ternary semiconducting compounds

The variation in bandgap energy with decreased size and varying composition of alloys has attracted the attention of researchers over the past few decades. In the present paper, a simple unified model is presented to study the impact of alloying on the bandgap energy of ternary semiconducting compounds with varying composition. The energy bandgap is determined for semiconducting homogeneous nano-compounds with zinc-blende and wurtzite structure, including ZnxCd1−xS, ZnxCd1−xSe, Cd(S)x(Se)1−x, and Cd(Se)x(Te)1−x. The model does not involve any adjustable parameters. The study provides insight into the impact of size, dimension, and composition on the energy bandgap of the material and the possibility of tuning the optical properties of semiconducting compounds by alloying, as alloyed compounds could be more stable and have higher luminescence than single semiconducting nanocrystal with a narrower energy bandgap. The model predictions are in good accord with the available experimental and simulated data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Enhanced thermoelectric performance of Zr1−xNiSnTax half-Heusler alloys: a first-principle study Theoretical prediction of the mechanical, electronic, optical and thermodynamic properties of antiperovskites A3BO (A = K, Rb and B = Au, Br) using DFT scheme: new candidate for optoelectronic devices application War strategy optimization-based methods for pattern synthesis of antenna arrays and optimization of microstrip patch antenna Estimating equivalent circuit parameters in various photovoltaic models and modules using the dingo optimization algorithm Strain engineered < Si/Si0.97C0.03 > superlattice photodetector for optoelectronic applications: a comprehensive numerical analysis and experimental verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1