研究 Co-60 和 Lu-177g 的生产效率与中子通量密度能量结构的关系

Ruben A. Shaginyan, Valery V. Korobeinikov, Viktor Yu. Stogov
{"title":"研究 Co-60 和 Lu-177g 的生产效率与中子通量密度能量结构的关系","authors":"Ruben A. Shaginyan, Valery V. Korobeinikov, Viktor Yu. Stogov","doi":"10.3897/nucet.9.116662","DOIUrl":null,"url":null,"abstract":"At present, the existing approaches to production of artificial isotopes are mostly based on the development experience from previous years. This work aims to develop an algorithm for selecting the most effective irradiation modes for target materials. The study is based on sequential modeling of irradiation of target isotopes by neutrons of different ‘single-group’ fluxes at the same neutron flux density within each energy group (BNAB-93). In this study, a flux density equal to 2×1015 n/(cm2×s) was used for each energy group. This approach will help ‘designing’ and selecting the actual neutron spectrum that has the highest efficiency compared to alternatives. The study modelled Co-60 and Lu-177g production for each energy group. The kinetics was analyzed in the most efficient groups in terms of specific activity. The maximum specific activity for Co-60 is reached in group 17 and is equal to 1 kCi/g. For the scheme of Lu-177g production through Lu-176 the maximum specific activity is reached in group 26 and is equal to 58.5 kCi/g. For the scheme of Lu-177g production through Yb-176, the maximum specific activity is reached in group 17 and is equal to 260 Ci/g, advantageous for production are groups 15–17 and 26.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study into the dependence of the Co-60 and Lu-177g production efficiency on the energy structure of neutron flux density\",\"authors\":\"Ruben A. Shaginyan, Valery V. Korobeinikov, Viktor Yu. Stogov\",\"doi\":\"10.3897/nucet.9.116662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the existing approaches to production of artificial isotopes are mostly based on the development experience from previous years. This work aims to develop an algorithm for selecting the most effective irradiation modes for target materials. The study is based on sequential modeling of irradiation of target isotopes by neutrons of different ‘single-group’ fluxes at the same neutron flux density within each energy group (BNAB-93). In this study, a flux density equal to 2×1015 n/(cm2×s) was used for each energy group. This approach will help ‘designing’ and selecting the actual neutron spectrum that has the highest efficiency compared to alternatives. The study modelled Co-60 and Lu-177g production for each energy group. The kinetics was analyzed in the most efficient groups in terms of specific activity. The maximum specific activity for Co-60 is reached in group 17 and is equal to 1 kCi/g. For the scheme of Lu-177g production through Lu-176 the maximum specific activity is reached in group 26 and is equal to 58.5 kCi/g. For the scheme of Lu-177g production through Yb-176, the maximum specific activity is reached in group 17 and is equal to 260 Ci/g, advantageous for production are groups 15–17 and 26.\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3897/nucet.9.116662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3897/nucet.9.116662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,生产人造同位素的现有方法大多基于前几年的开发经验。这项工作旨在开发一种算法,用于选择对目标材料最有效的辐照模式。研究基于在每个能量组(BNAB-93)内以相同的中子通量密度用不同 "单组 "通量的中子辐照目标同位素的顺序建模。在这项研究中,每个能量组使用的通量密度等于 2×1015 n/(cm2×s)。这种方法有助于 "设计 "和选择与其他方法相比效率最高的实际中子能谱。研究模拟了每个能量组的 Co-60 和 Lu-177g 产生情况。从比活度的角度对效率最高的组别进行了动力学分析。第 17 组达到了 Co-60 的最大比活度,等于 1 kCi/g。通过 Lu-176 生产 Lu-177g 的方案在第 26 组达到最大比活度,相当于 58.5 kCi/g。在通过 Yb-176 生产 Lu-177g 的方案中,第 17 组达到最大比活度,等于 260 Ci/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study into the dependence of the Co-60 and Lu-177g production efficiency on the energy structure of neutron flux density
At present, the existing approaches to production of artificial isotopes are mostly based on the development experience from previous years. This work aims to develop an algorithm for selecting the most effective irradiation modes for target materials. The study is based on sequential modeling of irradiation of target isotopes by neutrons of different ‘single-group’ fluxes at the same neutron flux density within each energy group (BNAB-93). In this study, a flux density equal to 2×1015 n/(cm2×s) was used for each energy group. This approach will help ‘designing’ and selecting the actual neutron spectrum that has the highest efficiency compared to alternatives. The study modelled Co-60 and Lu-177g production for each energy group. The kinetics was analyzed in the most efficient groups in terms of specific activity. The maximum specific activity for Co-60 is reached in group 17 and is equal to 1 kCi/g. For the scheme of Lu-177g production through Lu-176 the maximum specific activity is reached in group 26 and is equal to 58.5 kCi/g. For the scheme of Lu-177g production through Yb-176, the maximum specific activity is reached in group 17 and is equal to 260 Ci/g, advantageous for production are groups 15–17 and 26.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Potential role of nuclear power in a carbon-free world Corrosion resistance of chromium coating on the inner surface of EP823-Sh steel cladding A brief investigation of the dose field virtual simulation tools for reactor decommissioning and preliminary design for the HWRR reactor in China Assessment of the possibility for large-scale 238Pu production in a VVER-1000 power reactor A computer code for optimizing the neutronics model parameters based on results of reactor physics experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1