多车交互场景下的智能汽车驾驶风险评估综述

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC World Electric Vehicle Journal Pub Date : 2023-12-14 DOI:10.3390/wevj14120348
Xiaoxia Xiong, Shiya Zhang, Yuexia Chen
{"title":"多车交互场景下的智能汽车驾驶风险评估综述","authors":"Xiaoxia Xiong, Shiya Zhang, Yuexia Chen","doi":"10.3390/wevj14120348","DOIUrl":null,"url":null,"abstract":"With the rapid breakthroughs in artificial intelligence technology and intelligent manufacturing technology, automotive intelligence has become a research hotspot, and much progress has been made. However, a skeptical attitude is still held towards intelligent vehicles, especially when driving in a complex multi-vehicle interaction environment. The interaction among multi-vehicles generally involves more uncertainties in vehicle motion and entails higher driving risk, and thus deserves more research concerns and efforts. Targeting the safety assessment issue of complex multi-vehicle interaction scenarios, this article summarizes the existing literature on the relevant data collection methodologies, vehicle interaction mechanisms, and driving risk evaluation methods for intelligent vehicles. The limitations of the existing assessment methods and the prospects for their future development are analyzed. The results of this article can provide a reference for intelligent vehicles in terms of timely and accurate driving risk assessment in real-world multi-vehicle scenarios and help improve the safe driving technologies of intelligent vehicles.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"28 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Intelligent Vehicle Driving Risk Assessment in Multi-Vehicle Interaction Scenarios\",\"authors\":\"Xiaoxia Xiong, Shiya Zhang, Yuexia Chen\",\"doi\":\"10.3390/wevj14120348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid breakthroughs in artificial intelligence technology and intelligent manufacturing technology, automotive intelligence has become a research hotspot, and much progress has been made. However, a skeptical attitude is still held towards intelligent vehicles, especially when driving in a complex multi-vehicle interaction environment. The interaction among multi-vehicles generally involves more uncertainties in vehicle motion and entails higher driving risk, and thus deserves more research concerns and efforts. Targeting the safety assessment issue of complex multi-vehicle interaction scenarios, this article summarizes the existing literature on the relevant data collection methodologies, vehicle interaction mechanisms, and driving risk evaluation methods for intelligent vehicles. The limitations of the existing assessment methods and the prospects for their future development are analyzed. The results of this article can provide a reference for intelligent vehicles in terms of timely and accurate driving risk assessment in real-world multi-vehicle scenarios and help improve the safe driving technologies of intelligent vehicles.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"28 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14120348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14120348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能技术和智能制造技术的快速突破,汽车智能化已成为研究热点,并取得了很大进展。然而,人们对智能汽车仍持怀疑态度,尤其是在复杂的多车交互环境中行驶时。多车交互通常涉及更多车辆运动的不确定性,具有更高的驾驶风险,因此值得更多的研究关注和努力。本文针对复杂多车交互场景下的安全评估问题,总结了现有文献中相关的数据采集方法、车辆交互机制以及智能车辆驾驶风险评估方法。分析了现有评估方法的局限性及其未来发展前景。本文的研究成果可为智能汽车在实际多车场景下及时、准确地进行驾驶风险评估提供参考,有助于提高智能汽车的安全驾驶技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Intelligent Vehicle Driving Risk Assessment in Multi-Vehicle Interaction Scenarios
With the rapid breakthroughs in artificial intelligence technology and intelligent manufacturing technology, automotive intelligence has become a research hotspot, and much progress has been made. However, a skeptical attitude is still held towards intelligent vehicles, especially when driving in a complex multi-vehicle interaction environment. The interaction among multi-vehicles generally involves more uncertainties in vehicle motion and entails higher driving risk, and thus deserves more research concerns and efforts. Targeting the safety assessment issue of complex multi-vehicle interaction scenarios, this article summarizes the existing literature on the relevant data collection methodologies, vehicle interaction mechanisms, and driving risk evaluation methods for intelligent vehicles. The limitations of the existing assessment methods and the prospects for their future development are analyzed. The results of this article can provide a reference for intelligent vehicles in terms of timely and accurate driving risk assessment in real-world multi-vehicle scenarios and help improve the safe driving technologies of intelligent vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
期刊最新文献
Benefit Evaluation of Carbon Reduction and Loss Reduction under a Coordinated Transportation–Electricity Network Parameter Compensation for the Predictive Control System of a Permanent Magnet Synchronous Motor Based on Bacterial Foraging Optimization Algorithm Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks Time-Sensitive Network Simulation for In-Vehicle Ethernet Using SARSA Algorithm Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1