S. J. Jiang, Y. L. Xu, J. Zhu, G. Q. Zhang, D. H. Dan
{"title":"基于现场测量数据的大跨度桥梁涡力识别","authors":"S. J. Jiang, Y. L. Xu, J. Zhu, G. Q. Zhang, D. H. Dan","doi":"10.1155/2023/9361196","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Vortex-induced force (VIF) identification and modelling of a long-span bridge are often conducted in terms of aeroelastic sectional model tests in wind tunnels. However, there are uncertainties inherent in wind tunnel model tests so that vortex-induced vibration (VIV) still occurs in real long-span bridges designed according to wind tunnel test results. This paper presents a framework for VIF identification of a long-span bridge based on field-measured wind and acceleration data. The framework is composed of the four steps: (1) decompose field-measured acceleration response time histories using variational mode decomposition (VMD) method; (2) obtain velocity and displacement response time histories using frequency domain integration (FDI) method; (3) establish and update the finite element model and identify the generalized VIF time histories of the bridge; and (4) identify the parameters in the polynomial VIF models and decide the most suitable VIF model. The proposed framework is finally applied to a real suspension bridge with a recent VIV event. The results show that the proposed framework can accurately identify the generalized VIF acting on the bridge from the field-measured acceleration and wind data, and the derived most suitable VIF model can produce almost the same vortex-induced response (VIR) as the measured ones.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2023 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9361196","citationCount":"0","resultStr":"{\"title\":\"Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data\",\"authors\":\"S. J. Jiang, Y. L. Xu, J. Zhu, G. Q. Zhang, D. H. Dan\",\"doi\":\"10.1155/2023/9361196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Vortex-induced force (VIF) identification and modelling of a long-span bridge are often conducted in terms of aeroelastic sectional model tests in wind tunnels. However, there are uncertainties inherent in wind tunnel model tests so that vortex-induced vibration (VIV) still occurs in real long-span bridges designed according to wind tunnel test results. This paper presents a framework for VIF identification of a long-span bridge based on field-measured wind and acceleration data. The framework is composed of the four steps: (1) decompose field-measured acceleration response time histories using variational mode decomposition (VMD) method; (2) obtain velocity and displacement response time histories using frequency domain integration (FDI) method; (3) establish and update the finite element model and identify the generalized VIF time histories of the bridge; and (4) identify the parameters in the polynomial VIF models and decide the most suitable VIF model. The proposed framework is finally applied to a real suspension bridge with a recent VIV event. The results show that the proposed framework can accurately identify the generalized VIF acting on the bridge from the field-measured acceleration and wind data, and the derived most suitable VIF model can produce almost the same vortex-induced response (VIR) as the measured ones.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9361196\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/9361196\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/9361196","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
Vortex-induced force (VIF) identification and modelling of a long-span bridge are often conducted in terms of aeroelastic sectional model tests in wind tunnels. However, there are uncertainties inherent in wind tunnel model tests so that vortex-induced vibration (VIV) still occurs in real long-span bridges designed according to wind tunnel test results. This paper presents a framework for VIF identification of a long-span bridge based on field-measured wind and acceleration data. The framework is composed of the four steps: (1) decompose field-measured acceleration response time histories using variational mode decomposition (VMD) method; (2) obtain velocity and displacement response time histories using frequency domain integration (FDI) method; (3) establish and update the finite element model and identify the generalized VIF time histories of the bridge; and (4) identify the parameters in the polynomial VIF models and decide the most suitable VIF model. The proposed framework is finally applied to a real suspension bridge with a recent VIV event. The results show that the proposed framework can accurately identify the generalized VIF acting on the bridge from the field-measured acceleration and wind data, and the derived most suitable VIF model can produce almost the same vortex-induced response (VIR) as the measured ones.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.