{"title":"利用 IIoU 解决 3D 物体检测中 IoU 丢失的问题","authors":"N. Ravi, Mohamed El-Sharkawy","doi":"10.3390/fi15120399","DOIUrl":null,"url":null,"abstract":"Three-dimensional object detection involves estimating the dimensions, orientations, and locations of 3D bounding boxes. Intersection of Union (IoU) loss measures the overlap between predicted 3D box and ground truth 3D bounding boxes. The localization task uses smooth-L1 loss with IoU to estimate the object’s location, and the classification task identifies the object/class category inside each 3D bounding box. Localization suffers a performance gap in cases where the predicted and ground truth boxes overlap significantly less or do not overlap, indicating the boxes are far away, and in scenarios where the boxes are inclusive. Existing axis-aligned IoU losses suffer performance drop in cases of rotated 3D bounding boxes. This research addresses the shortcomings in bounding box regression problems of 3D object detection by introducing an Improved Intersection Over Union (IIoU) loss. The proposed loss function’s performance is experimented on LiDAR-based and Camera-LiDAR-based fusion methods using the KITTI dataset.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"35 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing the Gaps of IoU Loss in 3D Object Detection with IIoU\",\"authors\":\"N. Ravi, Mohamed El-Sharkawy\",\"doi\":\"10.3390/fi15120399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional object detection involves estimating the dimensions, orientations, and locations of 3D bounding boxes. Intersection of Union (IoU) loss measures the overlap between predicted 3D box and ground truth 3D bounding boxes. The localization task uses smooth-L1 loss with IoU to estimate the object’s location, and the classification task identifies the object/class category inside each 3D bounding box. Localization suffers a performance gap in cases where the predicted and ground truth boxes overlap significantly less or do not overlap, indicating the boxes are far away, and in scenarios where the boxes are inclusive. Existing axis-aligned IoU losses suffer performance drop in cases of rotated 3D bounding boxes. This research addresses the shortcomings in bounding box regression problems of 3D object detection by introducing an Improved Intersection Over Union (IIoU) loss. The proposed loss function’s performance is experimented on LiDAR-based and Camera-LiDAR-based fusion methods using the KITTI dataset.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Addressing the Gaps of IoU Loss in 3D Object Detection with IIoU
Three-dimensional object detection involves estimating the dimensions, orientations, and locations of 3D bounding boxes. Intersection of Union (IoU) loss measures the overlap between predicted 3D box and ground truth 3D bounding boxes. The localization task uses smooth-L1 loss with IoU to estimate the object’s location, and the classification task identifies the object/class category inside each 3D bounding box. Localization suffers a performance gap in cases where the predicted and ground truth boxes overlap significantly less or do not overlap, indicating the boxes are far away, and in scenarios where the boxes are inclusive. Existing axis-aligned IoU losses suffer performance drop in cases of rotated 3D bounding boxes. This research addresses the shortcomings in bounding box regression problems of 3D object detection by introducing an Improved Intersection Over Union (IIoU) loss. The proposed loss function’s performance is experimented on LiDAR-based and Camera-LiDAR-based fusion methods using the KITTI dataset.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.