CAR-T 细胞疗法的最新进展和当前挑战。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2024-02-01 Epub Date: 2023-12-27 DOI:10.1007/s10529-023-03461-0
R Joy, K Phair, R O'Hara, D Brady
{"title":"CAR-T 细胞疗法的最新进展和当前挑战。","authors":"R Joy, K Phair, R O'Hara, D Brady","doi":"10.1007/s10529-023-03461-0","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid advancements in the field of immunotherapy have significantly improved cancer treatments. Specifically, an individualized cell-based modality which involves the removal of some of the patient's own white blood cells, including T cells, has revolutionized research in this field. This study focuses on the recent advances and current challenges of Chimeric Antigen Receptor- T (CAR-T) cell therapy and its regulations in the United States (US) and European Union (EU). Understanding the regulatory regimes of CAR-T cell therapy is critical for researchers and manufacturers as they navigate the hurdles of bringing CAR-T cell therapy to the global market. Benefits of CAR-T cell therapy include high response rates and the potential of long-term remissions in some haematological malignancies. However, the drawbacks are still evident including high costs, adverse reactions, and limited efficacy to solid tumours. CAR-T cell therapy is rapidly advancing, with 1231 clinical trials launched globally according to www.clinicalTrial.gov . The future of CAR-T cell therapy holds enormous promise but improving its safety, effectiveness, and availability are still barriers to its successful implementation.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and current challenges in CAR-T cell therapy.\",\"authors\":\"R Joy, K Phair, R O'Hara, D Brady\",\"doi\":\"10.1007/s10529-023-03461-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid advancements in the field of immunotherapy have significantly improved cancer treatments. Specifically, an individualized cell-based modality which involves the removal of some of the patient's own white blood cells, including T cells, has revolutionized research in this field. This study focuses on the recent advances and current challenges of Chimeric Antigen Receptor- T (CAR-T) cell therapy and its regulations in the United States (US) and European Union (EU). Understanding the regulatory regimes of CAR-T cell therapy is critical for researchers and manufacturers as they navigate the hurdles of bringing CAR-T cell therapy to the global market. Benefits of CAR-T cell therapy include high response rates and the potential of long-term remissions in some haematological malignancies. However, the drawbacks are still evident including high costs, adverse reactions, and limited efficacy to solid tumours. CAR-T cell therapy is rapidly advancing, with 1231 clinical trials launched globally according to www.clinicalTrial.gov . The future of CAR-T cell therapy holds enormous promise but improving its safety, effectiveness, and availability are still barriers to its successful implementation.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03461-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03461-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫疗法领域的快速发展极大地改善了癌症治疗。具体来说,一种以细胞为基础的个体化疗法,即去除患者自身的部分白细胞(包括 T 细胞),彻底改变了这一领域的研究。本研究的重点是嵌合抗原受体-T(CAR-T)细胞疗法的最新进展和当前面临的挑战,以及美国(US)和欧盟(EU)对该疗法的监管。了解 CAR-T 细胞疗法的监管制度对研究人员和制造商来说至关重要,因为他们要克服重重障碍,将 CAR-T 细胞疗法推向全球市场。CAR-T 细胞疗法的优点包括高应答率和某些血液恶性肿瘤长期缓解的潜力。不过,缺点也很明显,包括成本高、不良反应多以及对实体瘤的疗效有限。CAR-T 细胞疗法发展迅速,据 www.clinicalTrial.gov 报道,全球已开展了 1231 项临床试验。CAR-T 细胞疗法前景广阔,但提高其安全性、有效性和可用性仍是其成功实施的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances and current challenges in CAR-T cell therapy.

Rapid advancements in the field of immunotherapy have significantly improved cancer treatments. Specifically, an individualized cell-based modality which involves the removal of some of the patient's own white blood cells, including T cells, has revolutionized research in this field. This study focuses on the recent advances and current challenges of Chimeric Antigen Receptor- T (CAR-T) cell therapy and its regulations in the United States (US) and European Union (EU). Understanding the regulatory regimes of CAR-T cell therapy is critical for researchers and manufacturers as they navigate the hurdles of bringing CAR-T cell therapy to the global market. Benefits of CAR-T cell therapy include high response rates and the potential of long-term remissions in some haematological malignancies. However, the drawbacks are still evident including high costs, adverse reactions, and limited efficacy to solid tumours. CAR-T cell therapy is rapidly advancing, with 1231 clinical trials launched globally according to www.clinicalTrial.gov . The future of CAR-T cell therapy holds enormous promise but improving its safety, effectiveness, and availability are still barriers to its successful implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
Nepeta cataria L. (catnip) can serve as a chassis for the engineering of secondary metabolic pathways. Overexpression of a pearl millet WRKY transcription factor gene, PgWRKY74, in Arabidopsis retards shoot growth under dehydration and salinity-stressed conditions. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Development of a bacterial cellulose-gelatin composite as a suitable scaffold for cardiac tissue engineering. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1