用于高效电磁波吸收、隔热和阻燃的多功能碳纤维增强 C/SiOC 气凝胶复合材料

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2023-12-27 DOI:10.1002/smll.202308145
Dongdong Yang, Shun Dong, Tangyin Cui, Jianqiang Xin, Xiaojing Xu, Jingmao Chen, Yongshuai Xie, Guiqing Chen, Changqing Hong, Xinghong Zhang
{"title":"用于高效电磁波吸收、隔热和阻燃的多功能碳纤维增强 C/SiOC 气凝胶复合材料","authors":"Dongdong Yang,&nbsp;Shun Dong,&nbsp;Tangyin Cui,&nbsp;Jianqiang Xin,&nbsp;Xiaojing Xu,&nbsp;Jingmao Chen,&nbsp;Yongshuai Xie,&nbsp;Guiqing Chen,&nbsp;Changqing Hong,&nbsp;Xinghong Zhang","doi":"10.1002/smll.202308145","DOIUrl":null,"url":null,"abstract":"<p>Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm<sup>−3</sup>, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the <i>x</i>/<i>y</i> and <i>z</i> directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the <i>x</i>/<i>y</i> and <i>z</i> directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Carbon Fiber Reinforced C/SiOC Aerogel Composites for Efficient Electromagnetic Wave Absorption, Thermal Insulation, and Flame Retardancy\",\"authors\":\"Dongdong Yang,&nbsp;Shun Dong,&nbsp;Tangyin Cui,&nbsp;Jianqiang Xin,&nbsp;Xiaojing Xu,&nbsp;Jingmao Chen,&nbsp;Yongshuai Xie,&nbsp;Guiqing Chen,&nbsp;Changqing Hong,&nbsp;Xinghong Zhang\",\"doi\":\"10.1002/smll.202308145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm<sup>−3</sup>, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the <i>x</i>/<i>y</i> and <i>z</i> directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the <i>x</i>/<i>y</i> and <i>z</i> directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202308145\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202308145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维复合材料作为一种潜在的电磁波吸收材料具有广阔的应用前景,但要将电磁波吸收、机械强度、隔热和阻燃等多种功能融为一体仍极具挑战性。本文首次采用溶胶-凝胶浸渍结合环境干燥工艺成功制备了新型碳纤维增强 C/SiOC 气凝胶(CF/CS)复合材料。只需改变溶胶-凝胶浸渍周期,就能控制所获得的 CF/CS 复合材料的密度(原始碳纤维毡(S0)以及经过一个(S1)和两个(S2)浸渍周期的样品的密度分别为 0.249、0.324 和 0.402 g cm-3),从而有效地调整了其性能。值得注意的是,S2 具有优异的微波吸收特性,最佳反射损耗为 -65.45 dB,比 S0(-10.90 dB)有显著提高。同时,与 S0(在 x/y 和 z 方向上分别为 0.75 和 0.30 兆帕)相比,S2 的机械性能显著提高,在 x/y 和 z 方向上的最大抗压强度分别为 10.37 和 4.93 兆帕。此外,CF/CS 复合材料的隔热性能比 S0 更优越,并具有良好的阻燃性能。这项研究为多功能电磁波吸收器的开发提供了宝贵的指导和启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional Carbon Fiber Reinforced C/SiOC Aerogel Composites for Efficient Electromagnetic Wave Absorption, Thermal Insulation, and Flame Retardancy

Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm−3, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the x/y and z directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the x/y and z directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts Infrared Stealth Coating with Tunable Structural Color Based on ZnO Spheres Interfacial Self-Assembly Nanostructures: Constructions and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1