Zhang Yajun, Liu Jingji, Yumeng Xie, Kunming Liang, Zhe Zhang, Chen Yang, Fan Yiqiang
{"title":"利用二氧化碳激光烧蚀技术对基于 PDMS 的微流控设备进行超疏水处理","authors":"Zhang Yajun, Liu Jingji, Yumeng Xie, Kunming Liang, Zhe Zhang, Chen Yang, Fan Yiqiang","doi":"10.1007/s10404-023-02698-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO<sub>2</sub> laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation\",\"authors\":\"Zhang Yajun, Liu Jingji, Yumeng Xie, Kunming Liang, Zhe Zhang, Chen Yang, Fan Yiqiang\",\"doi\":\"10.1007/s10404-023-02698-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO<sub>2</sub> laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-023-02698-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02698-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation
This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).