{"title":"Study on dynamic solidification of digital droplets and random behaviors during the recalescence process in a spiral-shaped milli-reactor","authors":"Yulin Wang, Z. L. Wang","doi":"10.1007/s10404-025-02790-y","DOIUrl":null,"url":null,"abstract":"<div><p>The freezing of droplets is a complex interdisciplinary research topic involving physics, chemistry, and computational science. This phenomenon has attracted considerable attention due to its significant applications in aerospace, meteorology, materials science, cryobiology, and pharmaceutical development. The development of microfluidic technology provides an ideal platform for microscopic physical research. In this study, we designed a spiral-shaped milli-reactor with a T-junction microchannel to generate digital droplets for studying and observing the digital freezing process of droplets. During the study of the recalescence and solidification processes of digital droplets dynamically moving in microchannels, we found that although the digital generation of droplets in our channel aligns well with the literature, achieving the digitalization of the droplet freezing process is very challenging. Even the initial phase of freezing (the recalescence process) exhibits significant randomness. A key feature of the randomness in the freezing process is the nucleation position of droplets within the channel, which significantly impacts the digital characteristics and hinders digital freezing. During the investigation of freezing randomness, we identified five distinct nucleation profiles, which largely determine the evolution of the freezing front and the duration of the recalescence phase. However, upon studying the motion velocity of the freezing front, we found that these velocities are temperature-dependent. This aligns with the results of our phase-field simulations and experimental findings, indicating that the release of latent heat during the recalescence process is stable. Additionally, the randomness in freezing may also stem from the deformation of droplets during the solidification process. In this study, we identified two distinct solidification modes during the freezing phase: one initiating from the droplet’s head or tail and the other starting from the middle, with the latter causing significant droplet deformation. Through statistical analysis, we further explored the influence of flow rate variation on the digital clustering of droplet freezing and discovered flow rate parameters that optimize freezing digitalization. For instance, when the oil phase flow rate is fixed, varying the water phase flow rate initially increases and then decreases the flatness factor, reaching a maximum at a water phase flow rate of <span>\\(Q_w = 0.5 \\, \\text {mL/min}\\)</span>, indicating optimal clustering of droplets. The findings of this study provide new perspectives and approaches for controlling droplet freezing in microfluidic systems, while also offering significant insights into the unique behaviors and phenomena of nucleation and solidification processes at the microscale.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02790-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The freezing of droplets is a complex interdisciplinary research topic involving physics, chemistry, and computational science. This phenomenon has attracted considerable attention due to its significant applications in aerospace, meteorology, materials science, cryobiology, and pharmaceutical development. The development of microfluidic technology provides an ideal platform for microscopic physical research. In this study, we designed a spiral-shaped milli-reactor with a T-junction microchannel to generate digital droplets for studying and observing the digital freezing process of droplets. During the study of the recalescence and solidification processes of digital droplets dynamically moving in microchannels, we found that although the digital generation of droplets in our channel aligns well with the literature, achieving the digitalization of the droplet freezing process is very challenging. Even the initial phase of freezing (the recalescence process) exhibits significant randomness. A key feature of the randomness in the freezing process is the nucleation position of droplets within the channel, which significantly impacts the digital characteristics and hinders digital freezing. During the investigation of freezing randomness, we identified five distinct nucleation profiles, which largely determine the evolution of the freezing front and the duration of the recalescence phase. However, upon studying the motion velocity of the freezing front, we found that these velocities are temperature-dependent. This aligns with the results of our phase-field simulations and experimental findings, indicating that the release of latent heat during the recalescence process is stable. Additionally, the randomness in freezing may also stem from the deformation of droplets during the solidification process. In this study, we identified two distinct solidification modes during the freezing phase: one initiating from the droplet’s head or tail and the other starting from the middle, with the latter causing significant droplet deformation. Through statistical analysis, we further explored the influence of flow rate variation on the digital clustering of droplet freezing and discovered flow rate parameters that optimize freezing digitalization. For instance, when the oil phase flow rate is fixed, varying the water phase flow rate initially increases and then decreases the flatness factor, reaching a maximum at a water phase flow rate of \(Q_w = 0.5 \, \text {mL/min}\), indicating optimal clustering of droplets. The findings of this study provide new perspectives and approaches for controlling droplet freezing in microfluidic systems, while also offering significant insights into the unique behaviors and phenomena of nucleation and solidification processes at the microscale.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).