Study on dynamic solidification of digital droplets and random behaviors during the recalescence process in a spiral-shaped milli-reactor

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2025-02-14 DOI:10.1007/s10404-025-02790-y
Yulin Wang, Z. L. Wang
{"title":"Study on dynamic solidification of digital droplets and random behaviors during the recalescence process in a spiral-shaped milli-reactor","authors":"Yulin Wang,&nbsp;Z. L. Wang","doi":"10.1007/s10404-025-02790-y","DOIUrl":null,"url":null,"abstract":"<div><p>The freezing of droplets is a complex interdisciplinary research topic involving physics, chemistry, and computational science. This phenomenon has attracted considerable attention due to its significant applications in aerospace, meteorology, materials science, cryobiology, and pharmaceutical development. The development of microfluidic technology provides an ideal platform for microscopic physical research. In this study, we designed a spiral-shaped milli-reactor with a T-junction microchannel to generate digital droplets for studying and observing the digital freezing process of droplets. During the study of the recalescence and solidification processes of digital droplets dynamically moving in microchannels, we found that although the digital generation of droplets in our channel aligns well with the literature, achieving the digitalization of the droplet freezing process is very challenging. Even the initial phase of freezing (the recalescence process) exhibits significant randomness. A key feature of the randomness in the freezing process is the nucleation position of droplets within the channel, which significantly impacts the digital characteristics and hinders digital freezing. During the investigation of freezing randomness, we identified five distinct nucleation profiles, which largely determine the evolution of the freezing front and the duration of the recalescence phase. However, upon studying the motion velocity of the freezing front, we found that these velocities are temperature-dependent. This aligns with the results of our phase-field simulations and experimental findings, indicating that the release of latent heat during the recalescence process is stable. Additionally, the randomness in freezing may also stem from the deformation of droplets during the solidification process. In this study, we identified two distinct solidification modes during the freezing phase: one initiating from the droplet’s head or tail and the other starting from the middle, with the latter causing significant droplet deformation. Through statistical analysis, we further explored the influence of flow rate variation on the digital clustering of droplet freezing and discovered flow rate parameters that optimize freezing digitalization. For instance, when the oil phase flow rate is fixed, varying the water phase flow rate initially increases and then decreases the flatness factor, reaching a maximum at a water phase flow rate of <span>\\(Q_w = 0.5 \\, \\text {mL/min}\\)</span>, indicating optimal clustering of droplets. The findings of this study provide new perspectives and approaches for controlling droplet freezing in microfluidic systems, while also offering significant insights into the unique behaviors and phenomena of nucleation and solidification processes at the microscale.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02790-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The freezing of droplets is a complex interdisciplinary research topic involving physics, chemistry, and computational science. This phenomenon has attracted considerable attention due to its significant applications in aerospace, meteorology, materials science, cryobiology, and pharmaceutical development. The development of microfluidic technology provides an ideal platform for microscopic physical research. In this study, we designed a spiral-shaped milli-reactor with a T-junction microchannel to generate digital droplets for studying and observing the digital freezing process of droplets. During the study of the recalescence and solidification processes of digital droplets dynamically moving in microchannels, we found that although the digital generation of droplets in our channel aligns well with the literature, achieving the digitalization of the droplet freezing process is very challenging. Even the initial phase of freezing (the recalescence process) exhibits significant randomness. A key feature of the randomness in the freezing process is the nucleation position of droplets within the channel, which significantly impacts the digital characteristics and hinders digital freezing. During the investigation of freezing randomness, we identified five distinct nucleation profiles, which largely determine the evolution of the freezing front and the duration of the recalescence phase. However, upon studying the motion velocity of the freezing front, we found that these velocities are temperature-dependent. This aligns with the results of our phase-field simulations and experimental findings, indicating that the release of latent heat during the recalescence process is stable. Additionally, the randomness in freezing may also stem from the deformation of droplets during the solidification process. In this study, we identified two distinct solidification modes during the freezing phase: one initiating from the droplet’s head or tail and the other starting from the middle, with the latter causing significant droplet deformation. Through statistical analysis, we further explored the influence of flow rate variation on the digital clustering of droplet freezing and discovered flow rate parameters that optimize freezing digitalization. For instance, when the oil phase flow rate is fixed, varying the water phase flow rate initially increases and then decreases the flatness factor, reaching a maximum at a water phase flow rate of \(Q_w = 0.5 \, \text {mL/min}\), indicating optimal clustering of droplets. The findings of this study provide new perspectives and approaches for controlling droplet freezing in microfluidic systems, while also offering significant insights into the unique behaviors and phenomena of nucleation and solidification processes at the microscale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺旋形毫微反应器中数字液滴的动态凝固和再凝聚过程中的随机行为研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
Development of 3D-structured tilt capillary valve for lab-on-a-disc devices Advances in droplet microfluidics: a comprehensive review of innovations, morphology, dynamics, and applications Phage-displayed antibody fragments in microfluidic paper-based devices: a novel approach for sensitive detection of glycine-extended gastrin 17 biomarker using gold nanoparticles Study on dynamic solidification of digital droplets and random behaviors during the recalescence process in a spiral-shaped milli-reactor Heuristic modeling of material properties in Nano/Angstrom-scale channels: integrating experimental observations and MD simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1