{"title":"Development of 3D-structured tilt capillary valve for lab-on-a-disc devices","authors":"Yuito Murano, Shoji Yamamoto, Hayato Matsuzawa, Kazuhiro Morioka, Akihide Hemmi, Hizuru Nakajima","doi":"10.1007/s10404-025-02792-w","DOIUrl":null,"url":null,"abstract":"<div><p>Lab-on-a-disc (LoD) devices utilize centrifugal force to regulate fluid movement and are widely employed in biochemical applications. LoDs facilitate biochemical analysis by integrating different essential steps such as mixing samples and reagents, separating target components from the sample, and detecting analytes in a single platform. This integration on a single disc substrate enables the miniaturization and automation of various biochemical workflows. However, current LoD systems frequently rely on active valves, which increase complexity and limit versatility. To address these challenges, this study employed 3D printing technology to develop a 3D-structured tilt capillary valve acting as a passive control mechanism. Tilt capillary valves with inclination angles ranging from 50° to 80° were fabricated, and their burst rotational speeds and repeatability were compared with those of conventional capillary and slope valves. The tilt capillary valve demonstrated superior performance, achieving high-speed fluid control with relative standard deviations ranging from 1.5 to 2.1%. This improvement was attained by distributing the effects of centrifugal and gravitational forces along the inclined flow path. Additionally, the capillary structure stabilized the effects of surface tension, further enhancing reproducibility. These findings suggest that the developed tilt capillary valve enhances the LoD system performance, enabling more precise and rapid fluid control. The enhanced passive valve presented in this study can be implemented in advanced microfluidic device designs, presenting considerable potential for biochemical assays, point-of-care applications, environmental monitoring, and food safety testing.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-025-02792-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02792-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Lab-on-a-disc (LoD) devices utilize centrifugal force to regulate fluid movement and are widely employed in biochemical applications. LoDs facilitate biochemical analysis by integrating different essential steps such as mixing samples and reagents, separating target components from the sample, and detecting analytes in a single platform. This integration on a single disc substrate enables the miniaturization and automation of various biochemical workflows. However, current LoD systems frequently rely on active valves, which increase complexity and limit versatility. To address these challenges, this study employed 3D printing technology to develop a 3D-structured tilt capillary valve acting as a passive control mechanism. Tilt capillary valves with inclination angles ranging from 50° to 80° were fabricated, and their burst rotational speeds and repeatability were compared with those of conventional capillary and slope valves. The tilt capillary valve demonstrated superior performance, achieving high-speed fluid control with relative standard deviations ranging from 1.5 to 2.1%. This improvement was attained by distributing the effects of centrifugal and gravitational forces along the inclined flow path. Additionally, the capillary structure stabilized the effects of surface tension, further enhancing reproducibility. These findings suggest that the developed tilt capillary valve enhances the LoD system performance, enabling more precise and rapid fluid control. The enhanced passive valve presented in this study can be implemented in advanced microfluidic device designs, presenting considerable potential for biochemical assays, point-of-care applications, environmental monitoring, and food safety testing.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).