利用双音微波场的基于雷德贝格原子的调幅接收器

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2024-01-02 DOI:10.1140/epjqt/s40507-023-00212-y
Jinpeng Yuan, Ting Jin, Yang Yan, Liantuan Xiao, Suotang Jia, Lirong Wang
{"title":"利用双音微波场的基于雷德贝格原子的调幅接收器","authors":"Jinpeng Yuan,&nbsp;Ting Jin,&nbsp;Yang Yan,&nbsp;Liantuan Xiao,&nbsp;Suotang Jia,&nbsp;Lirong Wang","doi":"10.1140/epjqt/s40507-023-00212-y","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a Rydberg atom-based receiver for amplitude-modulation (AM) reception utilizing a dual-tone microwave field. The pseudo-random binary sequence (PRBS) signal is encoded in the basic microwave field (B-MW) at the frequency of 14.23 GHz. The signal can be decoded by the atomic receiver itself but more obvious with the introduction of an auxiliary microwave (A-MW) field. The receiver’s amplitude variations corresponding to microwave field are simulated by solving density matrices to give this mechanism theoretical support. An appropriate AM frequency is obtained by optimizing the signal-to-noise ratio, guaranteeing both large data transfer capacity (DTC) and high fidelity of the receiver. The power of two MW fields, along with the B-MW field frequency, is studied to acquire larger DTC and wider operating bandwidth. Finally, the readout of PRBS signals is performed by both the proposed and conventional mechanisms, and the comparison proves the obvious increment of DTC with the proposed scheme. This proof-of-principle demonstration exhibits the potential of the dual-tone scheme and offers a novel pathway for Rydberg atom-based microwave communication, which is beneficial for long-distance communication and weak signal perception outside the laboratory.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00212-y","citationCount":"0","resultStr":"{\"title\":\"A Rydberg atom-based amplitude-modulated receiver using the dual-tone microwave field\",\"authors\":\"Jinpeng Yuan,&nbsp;Ting Jin,&nbsp;Yang Yan,&nbsp;Liantuan Xiao,&nbsp;Suotang Jia,&nbsp;Lirong Wang\",\"doi\":\"10.1140/epjqt/s40507-023-00212-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a Rydberg atom-based receiver for amplitude-modulation (AM) reception utilizing a dual-tone microwave field. The pseudo-random binary sequence (PRBS) signal is encoded in the basic microwave field (B-MW) at the frequency of 14.23 GHz. The signal can be decoded by the atomic receiver itself but more obvious with the introduction of an auxiliary microwave (A-MW) field. The receiver’s amplitude variations corresponding to microwave field are simulated by solving density matrices to give this mechanism theoretical support. An appropriate AM frequency is obtained by optimizing the signal-to-noise ratio, guaranteeing both large data transfer capacity (DTC) and high fidelity of the receiver. The power of two MW fields, along with the B-MW field frequency, is studied to acquire larger DTC and wider operating bandwidth. Finally, the readout of PRBS signals is performed by both the proposed and conventional mechanisms, and the comparison proves the obvious increment of DTC with the proposed scheme. This proof-of-principle demonstration exhibits the potential of the dual-tone scheme and offers a novel pathway for Rydberg atom-based microwave communication, which is beneficial for long-distance communication and weak signal perception outside the laboratory.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00212-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00212-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00212-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于雷德堡原子的接收器,利用双音微波场进行调幅(AM)接收。伪随机二进制序列(PRBS)信号在频率为 14.23 千兆赫的基本微波场(B-MW)中编码。该信号可由原子接收器本身解码,但引入辅助微波场(A-MW)后,解码效果会更加明显。通过求解密度矩阵,模拟了接收器与微波场相对应的振幅变化,为这一机制提供了理论支持。通过优化信噪比,获得了合适的调幅频率,从而保证了接收器的大数据传输容量(DTC)和高保真性。研究了两个 MW 场的功率以及 B-MW 场频率,以获得更大的 DTC 和更宽的工作带宽。最后,建议的机制和传统机制都对 PRBS 信号进行了读出,对比证明建议的方案明显提高了 DTC。这次原理验证展示了双音频方案的潜力,为基于雷德堡原子的微波通信提供了一条新途径,有利于实验室外的远距离通信和微弱信号感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Rydberg atom-based amplitude-modulated receiver using the dual-tone microwave field

We propose a Rydberg atom-based receiver for amplitude-modulation (AM) reception utilizing a dual-tone microwave field. The pseudo-random binary sequence (PRBS) signal is encoded in the basic microwave field (B-MW) at the frequency of 14.23 GHz. The signal can be decoded by the atomic receiver itself but more obvious with the introduction of an auxiliary microwave (A-MW) field. The receiver’s amplitude variations corresponding to microwave field are simulated by solving density matrices to give this mechanism theoretical support. An appropriate AM frequency is obtained by optimizing the signal-to-noise ratio, guaranteeing both large data transfer capacity (DTC) and high fidelity of the receiver. The power of two MW fields, along with the B-MW field frequency, is studied to acquire larger DTC and wider operating bandwidth. Finally, the readout of PRBS signals is performed by both the proposed and conventional mechanisms, and the comparison proves the obvious increment of DTC with the proposed scheme. This proof-of-principle demonstration exhibits the potential of the dual-tone scheme and offers a novel pathway for Rydberg atom-based microwave communication, which is beneficial for long-distance communication and weak signal perception outside the laboratory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
On validity of quantum partial adiabatic search Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation A meta-trained generator for quantum architecture search Efficient realization of quantum algorithms with qudits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1