{"title":"外加应变、磁场和温度对磁敏弹性体压缩应力松弛行为的影响","authors":"Tran Huu Nam, Iva Petríková, Bohdana Marvalová","doi":"10.1007/s11043-023-09654-4","DOIUrl":null,"url":null,"abstract":"<div><p>The paper investigates the short- and long-term compressive stress relaxation behavior of isotropic and anisotropic magneto-sensitive elastomers (MSEs) prepared by incorporating carbonyl iron microparticles into a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic-field intensity, but decreased with increasing temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and the relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at different compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"917 - 936"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers\",\"authors\":\"Tran Huu Nam, Iva Petríková, Bohdana Marvalová\",\"doi\":\"10.1007/s11043-023-09654-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper investigates the short- and long-term compressive stress relaxation behavior of isotropic and anisotropic magneto-sensitive elastomers (MSEs) prepared by incorporating carbonyl iron microparticles into a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic-field intensity, but decreased with increasing temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and the relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at different compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"917 - 936\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09654-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09654-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers
The paper investigates the short- and long-term compressive stress relaxation behavior of isotropic and anisotropic magneto-sensitive elastomers (MSEs) prepared by incorporating carbonyl iron microparticles into a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic-field intensity, but decreased with increasing temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and the relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at different compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.