纳米材料复合油墨的电流体动力(EHD)印刷及其应用

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2024-01-03 DOI:10.1186/s40486-023-00194-7
Rizwan Ul Hassan, Mirkomil Sharipov, WonHyoung Ryu
{"title":"纳米材料复合油墨的电流体动力(EHD)印刷及其应用","authors":"Rizwan Ul Hassan,&nbsp;Mirkomil Sharipov,&nbsp;WonHyoung Ryu","doi":"10.1186/s40486-023-00194-7","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of high-resolution printed flexible electronic devices is prevalent in various fields, including energy storage, intelligent healthcare monitoring, soft robotics, and intelligent human–machine interaction, owing to its compact nature and mechanical flexibility. The EHD jet printing technology has the potential to develop the field of printing industry through its ability to fabricate high-resolution, flexible, stretchable, and 3D structures for electronic applications such as displays, sensors, and transistors. The EHD jet printing technology involves the use of solution-based inks made of diverse functional materials to print a wide range of structures. Consequently, it is imperative to have a comprehensive understanding of nanomaterial composites that are printed using EHD jet printing technology. This review provides a thorough overview of nanomaterial composite inks printed for electronic devices using EHD jet printing technology. In particular, a comprehensive overview has been provided about the utilization of EHD jet printing for nanomaterial composites in several domains, including flexible electrodes, flexible displays, transistors, energy harvesting, sensors, and biomedical applications. Moreover, this analysis presents a concise overview of the limitations and prospective future directions for nanomaterial composites fabricated by EHD jet printing.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00194-7","citationCount":"0","resultStr":"{\"title\":\"Electrohydrodynamic (EHD) printing of nanomaterial composite inks and their applications\",\"authors\":\"Rizwan Ul Hassan,&nbsp;Mirkomil Sharipov,&nbsp;WonHyoung Ryu\",\"doi\":\"10.1186/s40486-023-00194-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of high-resolution printed flexible electronic devices is prevalent in various fields, including energy storage, intelligent healthcare monitoring, soft robotics, and intelligent human–machine interaction, owing to its compact nature and mechanical flexibility. The EHD jet printing technology has the potential to develop the field of printing industry through its ability to fabricate high-resolution, flexible, stretchable, and 3D structures for electronic applications such as displays, sensors, and transistors. The EHD jet printing technology involves the use of solution-based inks made of diverse functional materials to print a wide range of structures. Consequently, it is imperative to have a comprehensive understanding of nanomaterial composites that are printed using EHD jet printing technology. This review provides a thorough overview of nanomaterial composite inks printed for electronic devices using EHD jet printing technology. In particular, a comprehensive overview has been provided about the utilization of EHD jet printing for nanomaterial composites in several domains, including flexible electrodes, flexible displays, transistors, energy harvesting, sensors, and biomedical applications. Moreover, this analysis presents a concise overview of the limitations and prospective future directions for nanomaterial composites fabricated by EHD jet printing.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00194-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-023-00194-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00194-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率印刷柔性电子设备因其结构紧凑和机械灵活性,在能源存储、智能医疗监控、软机器人和智能人机交互等多个领域得到广泛应用。EHD 喷射打印技术能够为显示器、传感器和晶体管等电子应用制造高分辨率、柔性、可拉伸的三维结构,因此具有发展打印行业的潜力。超高清喷射打印技术涉及使用由各种功能材料制成的溶液型油墨来打印各种结构。因此,必须全面了解使用 EHD 喷射打印技术打印的纳米材料复合材料。本综述全面概述了使用 EHD 喷射打印技术为电子设备打印的纳米材料复合油墨。特别是全面概述了在多个领域中利用超高清喷射打印技术打印纳米材料复合材料的情况,包括柔性电极、柔性显示器、晶体管、能量收集、传感器和生物医学应用。此外,该分析还简明扼要地概述了采用 EHD 喷射打印技术制造纳米材料复合材料的局限性和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrohydrodynamic (EHD) printing of nanomaterial composite inks and their applications

The utilization of high-resolution printed flexible electronic devices is prevalent in various fields, including energy storage, intelligent healthcare monitoring, soft robotics, and intelligent human–machine interaction, owing to its compact nature and mechanical flexibility. The EHD jet printing technology has the potential to develop the field of printing industry through its ability to fabricate high-resolution, flexible, stretchable, and 3D structures for electronic applications such as displays, sensors, and transistors. The EHD jet printing technology involves the use of solution-based inks made of diverse functional materials to print a wide range of structures. Consequently, it is imperative to have a comprehensive understanding of nanomaterial composites that are printed using EHD jet printing technology. This review provides a thorough overview of nanomaterial composite inks printed for electronic devices using EHD jet printing technology. In particular, a comprehensive overview has been provided about the utilization of EHD jet printing for nanomaterial composites in several domains, including flexible electrodes, flexible displays, transistors, energy harvesting, sensors, and biomedical applications. Moreover, this analysis presents a concise overview of the limitations and prospective future directions for nanomaterial composites fabricated by EHD jet printing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
A novel application of the micro-wire-electro-discharge-grinding (µ-WEDG) method for the generation of tantalum and brass nanoparticles A review of human augmentation and individual combat capability: focusing on MEMS-based neurotechnology Experimental study of processing of PCL (polycaprolactone)-peptides nanoparticles and its biodistribution analysis for drug delivery system Facile extraction of scanning probe shape for improved deconvolution of tip-sample interaction artifacts Contrasting responses of motile and non-motile Escherichia coli strains in resuscitation against stable ultrafine gold nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1