{"title":"从 GMI 数据中获取热带气旋南玛都水文介质和降水的云类型依赖性 1DVAR 算法","authors":"Linjun Han, Fuzhong Weng, Hao Hu, Xiuqing Hu","doi":"10.1007/s00376-023-3084-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding the structure of tropical cyclone (TC) hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation. In this study, the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol (2022). The Advanced Radiative Transfer Modeling System (ARMS) was used to calculate the Jacobian and degrees of freedom (ΔDOF) of cloud water, rainwater, and graupel for different channels of GMI in convective conditions. The retrieval results were compared with the Dual-frequency Precipitation Radar (DPR), GMI 2A, and IMERG products. It is shown that from all channels of GMI, rain water has the highest ΔDOF, at 1.72. According to the radiance Jacobian to atmospheric state variables, cloud water emission dominates its scattering. For rain water, the emission of channels 1–4 dominates scattering. Compared with the GMI 2A precipitation product, the 1DVAR precipitation rate has a higher correlation coefficient (0.713) with the IMERG product and can better reflect the location of TC precipitation. Near the TC eyewall, the highest radar echo top indicates strong convection. Near the melting layer where Ka-band attenuation is strong, the double frequency difference of DPR data reflects the location of the melting. The DPR drop size distribution (DSD) product shows that there is a significant increase in particle size below the melting layer in the spiral rain band. Thus, the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"29 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-Type-Dependent 1DVAR Algorithm for Retrieving Hydrometeors and Precipitation in Tropical Cyclone Nanmadol from GMI Data\",\"authors\":\"Linjun Han, Fuzhong Weng, Hao Hu, Xiuqing Hu\",\"doi\":\"10.1007/s00376-023-3084-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the structure of tropical cyclone (TC) hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation. In this study, the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol (2022). The Advanced Radiative Transfer Modeling System (ARMS) was used to calculate the Jacobian and degrees of freedom (ΔDOF) of cloud water, rainwater, and graupel for different channels of GMI in convective conditions. The retrieval results were compared with the Dual-frequency Precipitation Radar (DPR), GMI 2A, and IMERG products. It is shown that from all channels of GMI, rain water has the highest ΔDOF, at 1.72. According to the radiance Jacobian to atmospheric state variables, cloud water emission dominates its scattering. For rain water, the emission of channels 1–4 dominates scattering. Compared with the GMI 2A precipitation product, the 1DVAR precipitation rate has a higher correlation coefficient (0.713) with the IMERG product and can better reflect the location of TC precipitation. Near the TC eyewall, the highest radar echo top indicates strong convection. Near the melting layer where Ka-band attenuation is strong, the double frequency difference of DPR data reflects the location of the melting. The DPR drop size distribution (DSD) product shows that there is a significant increase in particle size below the melting layer in the spiral rain band. Thus, the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3084-8\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3084-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Cloud-Type-Dependent 1DVAR Algorithm for Retrieving Hydrometeors and Precipitation in Tropical Cyclone Nanmadol from GMI Data
Understanding the structure of tropical cyclone (TC) hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation. In this study, the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol (2022). The Advanced Radiative Transfer Modeling System (ARMS) was used to calculate the Jacobian and degrees of freedom (ΔDOF) of cloud water, rainwater, and graupel for different channels of GMI in convective conditions. The retrieval results were compared with the Dual-frequency Precipitation Radar (DPR), GMI 2A, and IMERG products. It is shown that from all channels of GMI, rain water has the highest ΔDOF, at 1.72. According to the radiance Jacobian to atmospheric state variables, cloud water emission dominates its scattering. For rain water, the emission of channels 1–4 dominates scattering. Compared with the GMI 2A precipitation product, the 1DVAR precipitation rate has a higher correlation coefficient (0.713) with the IMERG product and can better reflect the location of TC precipitation. Near the TC eyewall, the highest radar echo top indicates strong convection. Near the melting layer where Ka-band attenuation is strong, the double frequency difference of DPR data reflects the location of the melting. The DPR drop size distribution (DSD) product shows that there is a significant increase in particle size below the melting layer in the spiral rain band. Thus, the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.