通过有限元分析和先进的增材制造技术加强听骨链重建:综述

Q1 Computer Science Bioprinting Pub Date : 2024-01-01 DOI:10.1016/j.bprint.2023.e00328
Masoud Mohseni-Dargah , Christopher Pastras , Payal Mukherjee , Khosro Khajeh , Mohsen Asadnia
{"title":"通过有限元分析和先进的增材制造技术加强听骨链重建:综述","authors":"Masoud Mohseni-Dargah ,&nbsp;Christopher Pastras ,&nbsp;Payal Mukherjee ,&nbsp;Khosro Khajeh ,&nbsp;Mohsen Asadnia","doi":"10.1016/j.bprint.2023.e00328","DOIUrl":null,"url":null,"abstract":"<div><p>Middle ear ossicles transfer and amplify sound waves from the Tympanic Membrane (TM) to the inner ear and function as impedance transformers to overcome impedance mismatches between the outer air and cochlear fluid. Several factors, including trauma, otitis media, chronic middle ear disease, or cholesteatoma, can lead to ossicular erosion, causing conductive hearing loss (CHL). A common surgical approach to address ossicular erosion is Ossicular Chain Reconstruction (OCR), also known as ossiculoplasty, wherein a middle ear prosthesis is inserted in place of the damaged ossicle(s). Unfortunately, studies indicate poor long-term outcomes in OCR as current techniques fail to accurately reproduce the natural anatomy and function of the patients' middle ear, leading to excessive force transmission and prosthesis extrusion. One promising first-order approach is computational modelling paired with 3D printing, which allows multi-parametric control to optimise and fabricate ossicular implants customised to the patient's middle ear anatomy. This customisation approach holds the promise of enhancing hearing outcomes after prosthesis implantation, as it replicates the natural sound transmission mechanism and protective effect of the normal ossicles. There is a particular need for such an approach, given no clear standards exist for prosthesis optimisation, potentially affecting patient care and hearing outcomes. This paper provides a comprehensive review of various middle ear implants based on their materials and evaluates the feasibility of Finite Element Method (FEM)-based design and customisation of 3D printing for middle ear prostheses. To improve surgical outcomes, the optimisation of prosthesis design is crucial. Enhanced hearing restoration can be achieved through more efficient and personalised prosthesis designs, leveraging FE analysis and advanced additive manufacturing, notably 3D printing.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405886623000714/pdfft?md5=22a8cdf3fea7484db4b9fb469550a762&pid=1-s2.0-S2405886623000714-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing ossicular chain reconstruction through finite element analysis and advanced additive manufacturing: A review\",\"authors\":\"Masoud Mohseni-Dargah ,&nbsp;Christopher Pastras ,&nbsp;Payal Mukherjee ,&nbsp;Khosro Khajeh ,&nbsp;Mohsen Asadnia\",\"doi\":\"10.1016/j.bprint.2023.e00328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Middle ear ossicles transfer and amplify sound waves from the Tympanic Membrane (TM) to the inner ear and function as impedance transformers to overcome impedance mismatches between the outer air and cochlear fluid. Several factors, including trauma, otitis media, chronic middle ear disease, or cholesteatoma, can lead to ossicular erosion, causing conductive hearing loss (CHL). A common surgical approach to address ossicular erosion is Ossicular Chain Reconstruction (OCR), also known as ossiculoplasty, wherein a middle ear prosthesis is inserted in place of the damaged ossicle(s). Unfortunately, studies indicate poor long-term outcomes in OCR as current techniques fail to accurately reproduce the natural anatomy and function of the patients' middle ear, leading to excessive force transmission and prosthesis extrusion. One promising first-order approach is computational modelling paired with 3D printing, which allows multi-parametric control to optimise and fabricate ossicular implants customised to the patient's middle ear anatomy. This customisation approach holds the promise of enhancing hearing outcomes after prosthesis implantation, as it replicates the natural sound transmission mechanism and protective effect of the normal ossicles. There is a particular need for such an approach, given no clear standards exist for prosthesis optimisation, potentially affecting patient care and hearing outcomes. This paper provides a comprehensive review of various middle ear implants based on their materials and evaluates the feasibility of Finite Element Method (FEM)-based design and customisation of 3D printing for middle ear prostheses. To improve surgical outcomes, the optimisation of prosthesis design is crucial. Enhanced hearing restoration can be achieved through more efficient and personalised prosthesis designs, leveraging FE analysis and advanced additive manufacturing, notably 3D printing.</p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405886623000714/pdfft?md5=22a8cdf3fea7484db4b9fb469550a762&pid=1-s2.0-S2405886623000714-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886623000714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

中耳听小骨可将鼓膜 (TM) 的声波传递并放大到内耳,并起到阻抗变换器的作用,以克服外耳道空气和耳蜗液之间的阻抗失配。外伤、中耳炎、慢性中耳疾病或胆脂瘤等多种因素都可能导致听骨侵蚀,造成传导性听力损失(CHL)。解决听骨侵蚀的常见手术方法是听骨链重建术(OCR),也称为听骨成形术,即在受损听骨的位置植入中耳假体。遗憾的是,研究表明,OCR 的长期效果不佳,因为目前的技术无法准确再现患者中耳的自然解剖结构和功能,导致力传递过大和假体挤出。一种很有前景的一阶方法是将计算建模与三维打印技术相结合,通过多参数控制来优化和制造根据患者中耳解剖结构定制的听骨植入物。这种定制方法复制了正常听小骨的自然声音传播机制和保护作用,有望提高假体植入后的听力效果。鉴于假体优化没有明确的标准,可能会影响患者护理和听力效果,因此特别需要这种方法。本文根据材料对各种中耳假体进行了全面评述,并评估了基于有限元法(FEM)的设计和定制 3D 打印中耳假体的可行性。为了提高手术效果,优化假体设计至关重要。利用有限元分析和先进的增材制造技术,特别是三维打印技术,通过更高效和个性化的假体设计,可以实现更高的听力恢复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing ossicular chain reconstruction through finite element analysis and advanced additive manufacturing: A review

Middle ear ossicles transfer and amplify sound waves from the Tympanic Membrane (TM) to the inner ear and function as impedance transformers to overcome impedance mismatches between the outer air and cochlear fluid. Several factors, including trauma, otitis media, chronic middle ear disease, or cholesteatoma, can lead to ossicular erosion, causing conductive hearing loss (CHL). A common surgical approach to address ossicular erosion is Ossicular Chain Reconstruction (OCR), also known as ossiculoplasty, wherein a middle ear prosthesis is inserted in place of the damaged ossicle(s). Unfortunately, studies indicate poor long-term outcomes in OCR as current techniques fail to accurately reproduce the natural anatomy and function of the patients' middle ear, leading to excessive force transmission and prosthesis extrusion. One promising first-order approach is computational modelling paired with 3D printing, which allows multi-parametric control to optimise and fabricate ossicular implants customised to the patient's middle ear anatomy. This customisation approach holds the promise of enhancing hearing outcomes after prosthesis implantation, as it replicates the natural sound transmission mechanism and protective effect of the normal ossicles. There is a particular need for such an approach, given no clear standards exist for prosthesis optimisation, potentially affecting patient care and hearing outcomes. This paper provides a comprehensive review of various middle ear implants based on their materials and evaluates the feasibility of Finite Element Method (FEM)-based design and customisation of 3D printing for middle ear prostheses. To improve surgical outcomes, the optimisation of prosthesis design is crucial. Enhanced hearing restoration can be achieved through more efficient and personalised prosthesis designs, leveraging FE analysis and advanced additive manufacturing, notably 3D printing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
3D and 4D printed materials for cardiac transplantation: Advances in biogenerative engineering Evolution of toxicity testing platforms from 2D to advanced 3D bioprinting for safety assessment of drugs Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1