Ryunosuke Masaoka, G. Tran, Jin Nakazato, Kei Sakaguchi
{"title":"飞行基站的未来:毫米波无人飞行器的经验和数值研究","authors":"Ryunosuke Masaoka, G. Tran, Jin Nakazato, Kei Sakaguchi","doi":"10.3390/fi16010005","DOIUrl":null,"url":null,"abstract":"Nowadays, wireless communications are ubiquitously available. However, as pervasive as this technology is, there are distinct situations, such as during substantial public events, catastrophic disasters, or unexpected malfunctions of base stations (BSs), where the reliability of these communications might be jeopardized. Such scenarios highlight the vulnerabilities inherent in our current infrastructure. As a result, there is growing interest in establishing temporary networks that offer high-capacity communications and can adaptively shift service locations. To address this gap, this paper investigates the promising avenue of merging two powerful technologies: Unmanned Aerial Vehicles (UAVs) and millimeter-wave (mmWave) transmissions. UAVs, with their ability to be operated remotely and to take flight without being constrained by terrestrial limitations, present a compelling case for being the cellular BSs of the future. When integrated with the high-speed data transfer capabilities of mmWave technology, the potential is boundless. We embark on a hands-on approach to provide a tangible foundation for our hypothesis. We carry out comprehensive experiments using an actual UAV equipped with an mmWave device. Our main objective is to meticulously study its radio wave propagation attributes when the UAVs are in flight mode. The insights gleaned from this hands-on experimentation are profound. We contrast our experimental findings with a rigorous numerical analysis to refine our understanding. This comparative study aimed to shed light on the intricacies of wave propagation behaviors within the vast expanse of the atmosphere.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"45 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Future of Flying Base Stations: Empirical and Numerical Investigations of mmWave-Enabled UAVs\",\"authors\":\"Ryunosuke Masaoka, G. Tran, Jin Nakazato, Kei Sakaguchi\",\"doi\":\"10.3390/fi16010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, wireless communications are ubiquitously available. However, as pervasive as this technology is, there are distinct situations, such as during substantial public events, catastrophic disasters, or unexpected malfunctions of base stations (BSs), where the reliability of these communications might be jeopardized. Such scenarios highlight the vulnerabilities inherent in our current infrastructure. As a result, there is growing interest in establishing temporary networks that offer high-capacity communications and can adaptively shift service locations. To address this gap, this paper investigates the promising avenue of merging two powerful technologies: Unmanned Aerial Vehicles (UAVs) and millimeter-wave (mmWave) transmissions. UAVs, with their ability to be operated remotely and to take flight without being constrained by terrestrial limitations, present a compelling case for being the cellular BSs of the future. When integrated with the high-speed data transfer capabilities of mmWave technology, the potential is boundless. We embark on a hands-on approach to provide a tangible foundation for our hypothesis. We carry out comprehensive experiments using an actual UAV equipped with an mmWave device. Our main objective is to meticulously study its radio wave propagation attributes when the UAVs are in flight mode. The insights gleaned from this hands-on experimentation are profound. We contrast our experimental findings with a rigorous numerical analysis to refine our understanding. This comparative study aimed to shed light on the intricacies of wave propagation behaviors within the vast expanse of the atmosphere.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The Future of Flying Base Stations: Empirical and Numerical Investigations of mmWave-Enabled UAVs
Nowadays, wireless communications are ubiquitously available. However, as pervasive as this technology is, there are distinct situations, such as during substantial public events, catastrophic disasters, or unexpected malfunctions of base stations (BSs), where the reliability of these communications might be jeopardized. Such scenarios highlight the vulnerabilities inherent in our current infrastructure. As a result, there is growing interest in establishing temporary networks that offer high-capacity communications and can adaptively shift service locations. To address this gap, this paper investigates the promising avenue of merging two powerful technologies: Unmanned Aerial Vehicles (UAVs) and millimeter-wave (mmWave) transmissions. UAVs, with their ability to be operated remotely and to take flight without being constrained by terrestrial limitations, present a compelling case for being the cellular BSs of the future. When integrated with the high-speed data transfer capabilities of mmWave technology, the potential is boundless. We embark on a hands-on approach to provide a tangible foundation for our hypothesis. We carry out comprehensive experiments using an actual UAV equipped with an mmWave device. Our main objective is to meticulously study its radio wave propagation attributes when the UAVs are in flight mode. The insights gleaned from this hands-on experimentation are profound. We contrast our experimental findings with a rigorous numerical analysis to refine our understanding. This comparative study aimed to shed light on the intricacies of wave propagation behaviors within the vast expanse of the atmosphere.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.