Md. Ezaz Ahammed, Mrunal Swaroop Peravali, Santosh S. Naik, Ajay Kumar Yadav, T. Laxminidhi
{"title":"关于使用多针电极对肺和肾肿瘤进行射频消融(含纳米粒子和不含纳米粒子)的研究","authors":"Md. Ezaz Ahammed, Mrunal Swaroop Peravali, Santosh S. Naik, Ajay Kumar Yadav, T. Laxminidhi","doi":"10.1115/1.4064344","DOIUrl":null,"url":null,"abstract":"Radiofrequency ablation is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, FEM analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during radiofrequency ablation (RFA). Three dimensional thermoelectrically FEM model consisting of a multi-tined radiofrequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95°C) with 10 minutes ablation time. A study using multi-tined electrodes is carried out on different tissues i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study On Radiofrequency Ablation of Lung and Kidney Tumors with and Without Nanoparticles Using Multi-tined Electrode\",\"authors\":\"Md. Ezaz Ahammed, Mrunal Swaroop Peravali, Santosh S. Naik, Ajay Kumar Yadav, T. Laxminidhi\",\"doi\":\"10.1115/1.4064344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiofrequency ablation is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, FEM analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during radiofrequency ablation (RFA). Three dimensional thermoelectrically FEM model consisting of a multi-tined radiofrequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95°C) with 10 minutes ablation time. A study using multi-tined electrodes is carried out on different tissues i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study On Radiofrequency Ablation of Lung and Kidney Tumors with and Without Nanoparticles Using Multi-tined Electrode
Radiofrequency ablation is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, FEM analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during radiofrequency ablation (RFA). Three dimensional thermoelectrically FEM model consisting of a multi-tined radiofrequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95°C) with 10 minutes ablation time. A study using multi-tined electrodes is carried out on different tissues i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.