Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song
{"title":"基于知识蒸馏的小型无人机 GPS 欺骗检测","authors":"Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song","doi":"10.3390/fi15120389","DOIUrl":null,"url":null,"abstract":"As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"15 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Distillation-Based GPS Spoofing Detection for Small UAV\",\"authors\":\"Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song\",\"doi\":\"10.3390/fi15120389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Knowledge Distillation-Based GPS Spoofing Detection for Small UAV
As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.