探索移动边缘计算与车载网络多方面相互作用的综合调查

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-11-30 DOI:10.3390/fi15120391
Ali Pashazadeh, G. Nardini, G. Stea
{"title":"探索移动边缘计算与车载网络多方面相互作用的综合调查","authors":"Ali Pashazadeh, G. Nardini, G. Stea","doi":"10.3390/fi15120391","DOIUrl":null,"url":null,"abstract":"In recent years, the need for computation-intensive applications in mobile networks requiring more storage, powerful processors, and real-time responses has risen substantially. Vehicular networks play an important role in this ecosystem, as they must support multiple services, such as traffic monitoring or sharing of data involving different aspects of the vehicular traffic. Moreover, new resource-hungry applications have been envisaged, such as autonomous driving or in-cruise entertainment, hence making the demand for computation and storage resources one of the most important challenges in vehicular networks. In this context, Mobile Edge Computing (MEC) has become the key technology to handle these problems by providing cloud-like capabilities at the edge of mobile networks to support delay-sensitive and computation-intensive tasks. In the meantime, researchers have envisaged use of onboard vehicle resources to extend the computing capabilities of MEC systems. This paper presents a comprehensive review of the most recent works related to MEC-assisted vehicular networks, as well as vehicle-assisted MEC systems. We illustrate the MEC system architecture and discuss its deployment in vehicular environments, as well as the key technologies to realize this integration. After that, we review the recent literature by identifying three different areas, i.e.: (i) MEC providing additional resources to vehicles (e.g., for task offloading); (ii) MEC enabling innovative vehicular applications (e.g., platooning), and (iii) vehicular networks providing additional resources to MEC systems. Finally, we discuss open challenges and future research directions, addressing the possible interplays between MEC systems and vehicular networks.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"46 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey Exploring the Multifaceted Interplay between Mobile Edge Computing and Vehicular Networks\",\"authors\":\"Ali Pashazadeh, G. Nardini, G. Stea\",\"doi\":\"10.3390/fi15120391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the need for computation-intensive applications in mobile networks requiring more storage, powerful processors, and real-time responses has risen substantially. Vehicular networks play an important role in this ecosystem, as they must support multiple services, such as traffic monitoring or sharing of data involving different aspects of the vehicular traffic. Moreover, new resource-hungry applications have been envisaged, such as autonomous driving or in-cruise entertainment, hence making the demand for computation and storage resources one of the most important challenges in vehicular networks. In this context, Mobile Edge Computing (MEC) has become the key technology to handle these problems by providing cloud-like capabilities at the edge of mobile networks to support delay-sensitive and computation-intensive tasks. In the meantime, researchers have envisaged use of onboard vehicle resources to extend the computing capabilities of MEC systems. This paper presents a comprehensive review of the most recent works related to MEC-assisted vehicular networks, as well as vehicle-assisted MEC systems. We illustrate the MEC system architecture and discuss its deployment in vehicular environments, as well as the key technologies to realize this integration. After that, we review the recent literature by identifying three different areas, i.e.: (i) MEC providing additional resources to vehicles (e.g., for task offloading); (ii) MEC enabling innovative vehicular applications (e.g., platooning), and (iii) vehicular networks providing additional resources to MEC systems. Finally, we discuss open challenges and future research directions, addressing the possible interplays between MEC systems and vehicular networks.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"46 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,移动网络对计算密集型应用的需求大幅增加,这些应用需要更多的存储空间、强大的处理器和实时响应。车载网络在这一生态系统中扮演着重要角色,因为它们必须支持多种服务,如交通监控或涉及车载交通不同方面的数据共享。此外,自动驾驶或车载娱乐等对资源要求极高的新应用已经出现,因此对计算和存储资源的需求成为车载网络面临的最重要挑战之一。在这种情况下,移动边缘计算(MEC)通过在移动网络边缘提供类似云的功能来支持对延迟敏感的计算密集型任务,已成为解决这些问题的关键技术。同时,研究人员还设想利用车载资源来扩展 MEC 系统的计算能力。本文全面回顾了与 MEC 辅助车载网络以及车载 MEC 系统相关的最新研究成果。我们阐述了 MEC 系统架构,讨论了其在车载环境中的部署,以及实现这种集成的关键技术。之后,我们回顾了近期的文献,确定了三个不同的领域,即:(i) 为车辆提供额外资源的 MEC(例如,用于任务卸载);(ii) 支持创新车辆应用的 MEC(例如,排队);以及 (iii) 为 MEC 系统提供额外资源的车辆网络。最后,我们讨论了 MEC 系统与车载网络之间可能存在的相互作用,并探讨了公开挑战和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Survey Exploring the Multifaceted Interplay between Mobile Edge Computing and Vehicular Networks
In recent years, the need for computation-intensive applications in mobile networks requiring more storage, powerful processors, and real-time responses has risen substantially. Vehicular networks play an important role in this ecosystem, as they must support multiple services, such as traffic monitoring or sharing of data involving different aspects of the vehicular traffic. Moreover, new resource-hungry applications have been envisaged, such as autonomous driving or in-cruise entertainment, hence making the demand for computation and storage resources one of the most important challenges in vehicular networks. In this context, Mobile Edge Computing (MEC) has become the key technology to handle these problems by providing cloud-like capabilities at the edge of mobile networks to support delay-sensitive and computation-intensive tasks. In the meantime, researchers have envisaged use of onboard vehicle resources to extend the computing capabilities of MEC systems. This paper presents a comprehensive review of the most recent works related to MEC-assisted vehicular networks, as well as vehicle-assisted MEC systems. We illustrate the MEC system architecture and discuss its deployment in vehicular environments, as well as the key technologies to realize this integration. After that, we review the recent literature by identifying three different areas, i.e.: (i) MEC providing additional resources to vehicles (e.g., for task offloading); (ii) MEC enabling innovative vehicular applications (e.g., platooning), and (iii) vehicular networks providing additional resources to MEC systems. Finally, we discuss open challenges and future research directions, addressing the possible interplays between MEC systems and vehicular networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1