Youcef Fouzar, A. Lakhssassi, Ramakrishna Mundugar
{"title":"利用多方程多密钥混合加密法实现安全视频通信","authors":"Youcef Fouzar, A. Lakhssassi, Ramakrishna Mundugar","doi":"10.3390/fi15120387","DOIUrl":null,"url":null,"abstract":"The safeguarding of intellectual property and maintaining privacy for video content are closely linked to the effectiveness of security protocols employed in internet streaming platforms. The inadequate implementation of security measures by content providers has resulted in security breaches within entertainment applications, hence causing a reduction in the client base. This research aimed to enhance the security measures employed for video content by implementing a multi-key approach for encryption and decryption processes. The aforementioned objective was successfully accomplished through the use of hybrid methodologies, the production of dynamic keys, and the implementation of user-attribute-based techniques. The main aim of the study was to improve the security measures associated with the process of generating video material. The proposed methodology integrates a system of mathematical equations and a pseudorandom key within its execution. This novel approach significantly augments the degree of security the encryption mechanism provides. The proposed methodology utilises a set of mathematical equations that are randomly employed to achieve encryption. Using a random selection procedure contributes to the overall enhancement of the system’s security. The suggested methodology entails the division of the video into smaller entities known as chunks. Following this, every segment is subjected to encryption using unique keys that are produced dynamically in real-time. The proposed methodology is executed via Android platforms. The transmitter application is tasked with the responsibility of facilitating the streaming of the video content, whereas the receiver application serves the purpose of presenting the video to the user. A careful study was conducted to compare and contrast the suggested method with other similar methods that were already in use. The results of the study strongly support the safety and dependability of the procedure that was made available.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Video Communication Using Multi-Equation Multi-Key Hybrid Cryptography\",\"authors\":\"Youcef Fouzar, A. Lakhssassi, Ramakrishna Mundugar\",\"doi\":\"10.3390/fi15120387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The safeguarding of intellectual property and maintaining privacy for video content are closely linked to the effectiveness of security protocols employed in internet streaming platforms. The inadequate implementation of security measures by content providers has resulted in security breaches within entertainment applications, hence causing a reduction in the client base. This research aimed to enhance the security measures employed for video content by implementing a multi-key approach for encryption and decryption processes. The aforementioned objective was successfully accomplished through the use of hybrid methodologies, the production of dynamic keys, and the implementation of user-attribute-based techniques. The main aim of the study was to improve the security measures associated with the process of generating video material. The proposed methodology integrates a system of mathematical equations and a pseudorandom key within its execution. This novel approach significantly augments the degree of security the encryption mechanism provides. The proposed methodology utilises a set of mathematical equations that are randomly employed to achieve encryption. Using a random selection procedure contributes to the overall enhancement of the system’s security. The suggested methodology entails the division of the video into smaller entities known as chunks. Following this, every segment is subjected to encryption using unique keys that are produced dynamically in real-time. The proposed methodology is executed via Android platforms. The transmitter application is tasked with the responsibility of facilitating the streaming of the video content, whereas the receiver application serves the purpose of presenting the video to the user. A careful study was conducted to compare and contrast the suggested method with other similar methods that were already in use. The results of the study strongly support the safety and dependability of the procedure that was made available.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Secure Video Communication Using Multi-Equation Multi-Key Hybrid Cryptography
The safeguarding of intellectual property and maintaining privacy for video content are closely linked to the effectiveness of security protocols employed in internet streaming platforms. The inadequate implementation of security measures by content providers has resulted in security breaches within entertainment applications, hence causing a reduction in the client base. This research aimed to enhance the security measures employed for video content by implementing a multi-key approach for encryption and decryption processes. The aforementioned objective was successfully accomplished through the use of hybrid methodologies, the production of dynamic keys, and the implementation of user-attribute-based techniques. The main aim of the study was to improve the security measures associated with the process of generating video material. The proposed methodology integrates a system of mathematical equations and a pseudorandom key within its execution. This novel approach significantly augments the degree of security the encryption mechanism provides. The proposed methodology utilises a set of mathematical equations that are randomly employed to achieve encryption. Using a random selection procedure contributes to the overall enhancement of the system’s security. The suggested methodology entails the division of the video into smaller entities known as chunks. Following this, every segment is subjected to encryption using unique keys that are produced dynamically in real-time. The proposed methodology is executed via Android platforms. The transmitter application is tasked with the responsibility of facilitating the streaming of the video content, whereas the receiver application serves the purpose of presenting the video to the user. A careful study was conducted to compare and contrast the suggested method with other similar methods that were already in use. The results of the study strongly support the safety and dependability of the procedure that was made available.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.