{"title":"基于下一代物联网的智能医疗保健的轻量级隐私保护远程用户身份验证和密钥协议协议","authors":"Zeeshan Ashraf, Zahid Mahmood, Muddesar Iqbal","doi":"10.3390/fi15120386","DOIUrl":null,"url":null,"abstract":"The advancement and innovations in wireless communication technologies including the Internet of Things have massively changed the paradigms of health-based services. In particular, during the COVID-19 pandemic, the trends of working from home have been promoted. Wireless body area network technology frameworks help sufferers in remotely obtaining scientific remedies from physicians through the Internet without paying a visit to the clinics. IoT sensor nodes are incorporated into the clinical device to allow health workers to consult the patients’ fitness conditions in real time. Insecure wireless communication channels make unauthorized access to fitness-related records and manipulation of IoT sensor nodes attached to the patient’s bodies possible, as a result of security flaws. As a result, IoT-enabled devices are threatened by a number of well-known attacks, including impersonation, replay, man-in-the-middle, and denial-of-service assaults. Modern authentication schemes do solve these issues, but they frequently involve challenging mathematical concepts that raise processing and transmission costs. In this paper, we propose a lightweight, secure, and efficient symmetric key exchange algorithm and remote user authentication scheme. Our research proposal presents a successful privacy-protecting method for remote users and provides protection against known attacks. When compared to conventional options, this technique significantly reduces calculation costs by up to 37.68% and transmission costs by up to 32.55%.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Privacy-Preserving Remote User Authentication and Key Agreement Protocol for Next-Generation IoT-Based Smart Healthcare\",\"authors\":\"Zeeshan Ashraf, Zahid Mahmood, Muddesar Iqbal\",\"doi\":\"10.3390/fi15120386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement and innovations in wireless communication technologies including the Internet of Things have massively changed the paradigms of health-based services. In particular, during the COVID-19 pandemic, the trends of working from home have been promoted. Wireless body area network technology frameworks help sufferers in remotely obtaining scientific remedies from physicians through the Internet without paying a visit to the clinics. IoT sensor nodes are incorporated into the clinical device to allow health workers to consult the patients’ fitness conditions in real time. Insecure wireless communication channels make unauthorized access to fitness-related records and manipulation of IoT sensor nodes attached to the patient’s bodies possible, as a result of security flaws. As a result, IoT-enabled devices are threatened by a number of well-known attacks, including impersonation, replay, man-in-the-middle, and denial-of-service assaults. Modern authentication schemes do solve these issues, but they frequently involve challenging mathematical concepts that raise processing and transmission costs. In this paper, we propose a lightweight, secure, and efficient symmetric key exchange algorithm and remote user authentication scheme. Our research proposal presents a successful privacy-protecting method for remote users and provides protection against known attacks. When compared to conventional options, this technique significantly reduces calculation costs by up to 37.68% and transmission costs by up to 32.55%.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Lightweight Privacy-Preserving Remote User Authentication and Key Agreement Protocol for Next-Generation IoT-Based Smart Healthcare
The advancement and innovations in wireless communication technologies including the Internet of Things have massively changed the paradigms of health-based services. In particular, during the COVID-19 pandemic, the trends of working from home have been promoted. Wireless body area network technology frameworks help sufferers in remotely obtaining scientific remedies from physicians through the Internet without paying a visit to the clinics. IoT sensor nodes are incorporated into the clinical device to allow health workers to consult the patients’ fitness conditions in real time. Insecure wireless communication channels make unauthorized access to fitness-related records and manipulation of IoT sensor nodes attached to the patient’s bodies possible, as a result of security flaws. As a result, IoT-enabled devices are threatened by a number of well-known attacks, including impersonation, replay, man-in-the-middle, and denial-of-service assaults. Modern authentication schemes do solve these issues, but they frequently involve challenging mathematical concepts that raise processing and transmission costs. In this paper, we propose a lightweight, secure, and efficient symmetric key exchange algorithm and remote user authentication scheme. Our research proposal presents a successful privacy-protecting method for remote users and provides protection against known attacks. When compared to conventional options, this technique significantly reduces calculation costs by up to 37.68% and transmission costs by up to 32.55%.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.