基于网络节点带宽分配的主动减少拥塞的传输速率控制方法

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-11-29 DOI:10.3390/fi15120385
Hongyu Liu, Hong Ni, Rui Han
{"title":"基于网络节点带宽分配的主动减少拥塞的传输速率控制方法","authors":"Hongyu Liu, Hong Ni, Rui Han","doi":"10.3390/fi15120385","DOIUrl":null,"url":null,"abstract":"The control of transmission rates is currently a major topic in network research, as it plays a significant role in determining network performance. Traditional network design principles suggest that network nodes should only be responsible for forwarding data, while the sending node should manage control. However, sending nodes often lack information about network resources and must use slow-start algorithms to increase the transmission rate, potentially leading to wasted bandwidth and network congestion. Furthermore, incorrect judgments about network congestion by sending nodes may further reduce network throughput. The emergence of new Internet architectures, such as information-centric networks (ICNn), has empowered network nodes with more capabilities, including computation and caching. This paper proposes a method for transmission rate control that actively avoids congestion through network node bandwidth allocation. The sending, network, and receiving nodes each calculate the available transmission rate, and the sending node negotiates with the other nodes through a rate negotiation message to obtain the maximum transmission rate possible given the current state of the network. The network nodes notify the sending node to adjust the transmission rate to adapt to changes in the network through a rate adjustment message. Simulation experiments show that the proposed method is better than traditional methods in reducing network congestion, providing a stable transmission rate, increasing the network throughput capacity, and improving performance in high-latency and high-bandwidth networks. Additionally, the proposed transmission rate control method is fairer than traditional methods.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"138 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transmission Rate Control Method for Active Congestion Reduction Based on Network Node Bandwidth Allocation\",\"authors\":\"Hongyu Liu, Hong Ni, Rui Han\",\"doi\":\"10.3390/fi15120385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of transmission rates is currently a major topic in network research, as it plays a significant role in determining network performance. Traditional network design principles suggest that network nodes should only be responsible for forwarding data, while the sending node should manage control. However, sending nodes often lack information about network resources and must use slow-start algorithms to increase the transmission rate, potentially leading to wasted bandwidth and network congestion. Furthermore, incorrect judgments about network congestion by sending nodes may further reduce network throughput. The emergence of new Internet architectures, such as information-centric networks (ICNn), has empowered network nodes with more capabilities, including computation and caching. This paper proposes a method for transmission rate control that actively avoids congestion through network node bandwidth allocation. The sending, network, and receiving nodes each calculate the available transmission rate, and the sending node negotiates with the other nodes through a rate negotiation message to obtain the maximum transmission rate possible given the current state of the network. The network nodes notify the sending node to adjust the transmission rate to adapt to changes in the network through a rate adjustment message. Simulation experiments show that the proposed method is better than traditional methods in reducing network congestion, providing a stable transmission rate, increasing the network throughput capacity, and improving performance in high-latency and high-bandwidth networks. Additionally, the proposed transmission rate control method is fairer than traditional methods.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传输速率控制是当前网络研究的一个重要课题,因为它在决定网络性能方面发挥着重要作用。传统的网络设计原则认为,网络节点应只负责转发数据,而发送节点应负责管理控制。然而,发送节点往往缺乏网络资源信息,必须使用慢速启动算法来提高传输速率,从而可能导致带宽浪费和网络拥塞。此外,发送节点对网络拥塞的错误判断可能会进一步降低网络吞吐量。以信息为中心的网络(ICNn)等新型互联网架构的出现,赋予了网络节点更多的能力,包括计算和缓存。本文提出了一种传输速率控制方法,可通过网络节点带宽分配主动避免拥塞。发送节点、网络节点和接收节点各自计算可用传输速率,发送节点通过速率协商信息与其他节点协商,以获得当前网络状态下可能的最大传输速率。网络节点通过速率调整信息通知发送节点调整传输速率,以适应网络的变化。仿真实验表明,在减少网络拥塞、提供稳定的传输速率、提高网络吞吐能力以及改善高延迟和高带宽网络性能方面,建议的方法优于传统方法。此外,建议的传输速率控制方法比传统方法更公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Transmission Rate Control Method for Active Congestion Reduction Based on Network Node Bandwidth Allocation
The control of transmission rates is currently a major topic in network research, as it plays a significant role in determining network performance. Traditional network design principles suggest that network nodes should only be responsible for forwarding data, while the sending node should manage control. However, sending nodes often lack information about network resources and must use slow-start algorithms to increase the transmission rate, potentially leading to wasted bandwidth and network congestion. Furthermore, incorrect judgments about network congestion by sending nodes may further reduce network throughput. The emergence of new Internet architectures, such as information-centric networks (ICNn), has empowered network nodes with more capabilities, including computation and caching. This paper proposes a method for transmission rate control that actively avoids congestion through network node bandwidth allocation. The sending, network, and receiving nodes each calculate the available transmission rate, and the sending node negotiates with the other nodes through a rate negotiation message to obtain the maximum transmission rate possible given the current state of the network. The network nodes notify the sending node to adjust the transmission rate to adapt to changes in the network through a rate adjustment message. Simulation experiments show that the proposed method is better than traditional methods in reducing network congestion, providing a stable transmission rate, increasing the network throughput capacity, and improving performance in high-latency and high-bandwidth networks. Additionally, the proposed transmission rate control method is fairer than traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1