在可持续智能城市应用中实现隐私和安全的联合对抗训练策略

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-11-20 DOI:10.3390/fi15110371
Sapdo Utomo, Adarsh Rouniyar, Hsiu-Chun Hsu, Pao-Ann Hsiung
{"title":"在可持续智能城市应用中实现隐私和安全的联合对抗训练策略","authors":"Sapdo Utomo, Adarsh Rouniyar, Hsiu-Chun Hsu, Pao-Ann Hsiung","doi":"10.3390/fi15110371","DOIUrl":null,"url":null,"abstract":"Smart city applications that request sensitive user information necessitate a comprehensive data privacy solution. Federated learning (FL), also known as privacy by design, is a new paradigm in machine learning (ML). However, FL models are susceptible to adversarial attacks, similar to other AI models. In this paper, we propose federated adversarial training (FAT) strategies to generate robust global models that are resistant to adversarial attacks. We apply two adversarial attack methods, projected gradient descent (PGD) and the fast gradient sign method (FGSM), to our air pollution dataset to generate adversarial samples. We then evaluate the effectiveness of our FAT strategies in defending against these attacks. Our experiments show that FGSM-based adversarial attacks have a negligible impact on the accuracy of global models, while PGD-based attacks are more effective. However, we also show that our FAT strategies can make global models robust enough to withstand even PGD-based attacks. For example, the accuracy of our FAT-PGD and FL-mixed-PGD models is 81.13% and 82.60%, respectively, compared to 91.34% for the baseline FL model. This represents a reduction in accuracy of 10%, but this could be potentially mitigated by using a more complex and larger model. Our results demonstrate that FAT can enhance the security and privacy of sustainable smart city applications. We also show that it is possible to train robust global models from modest datasets per client, which challenges the conventional wisdom that adversarial training requires massive datasets.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"176 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Adversarial Training Strategies for Achieving Privacy and Security in Sustainable Smart City Applications\",\"authors\":\"Sapdo Utomo, Adarsh Rouniyar, Hsiu-Chun Hsu, Pao-Ann Hsiung\",\"doi\":\"10.3390/fi15110371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart city applications that request sensitive user information necessitate a comprehensive data privacy solution. Federated learning (FL), also known as privacy by design, is a new paradigm in machine learning (ML). However, FL models are susceptible to adversarial attacks, similar to other AI models. In this paper, we propose federated adversarial training (FAT) strategies to generate robust global models that are resistant to adversarial attacks. We apply two adversarial attack methods, projected gradient descent (PGD) and the fast gradient sign method (FGSM), to our air pollution dataset to generate adversarial samples. We then evaluate the effectiveness of our FAT strategies in defending against these attacks. Our experiments show that FGSM-based adversarial attacks have a negligible impact on the accuracy of global models, while PGD-based attacks are more effective. However, we also show that our FAT strategies can make global models robust enough to withstand even PGD-based attacks. For example, the accuracy of our FAT-PGD and FL-mixed-PGD models is 81.13% and 82.60%, respectively, compared to 91.34% for the baseline FL model. This represents a reduction in accuracy of 10%, but this could be potentially mitigated by using a more complex and larger model. Our results demonstrate that FAT can enhance the security and privacy of sustainable smart city applications. We also show that it is possible to train robust global models from modest datasets per client, which challenges the conventional wisdom that adversarial training requires massive datasets.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"176 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15110371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15110371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能城市应用需要用户的敏感信息,这就需要一个全面的数据隐私解决方案。联合学习(FL),也称为设计隐私,是机器学习(ML)的一种新模式。然而,FL 模型与其他人工智能模型类似,容易受到恶意攻击。在本文中,我们提出了联合对抗训练(FAT)策略,以生成可抵御对抗攻击的稳健全局模型。我们将两种对抗攻击方法,即投射梯度下降法(PGD)和快速梯度符号法(FGSM)应用于我们的空气污染数据集,以生成对抗样本。然后,我们评估了 FAT 策略在防御这些攻击方面的有效性。我们的实验表明,基于 FGSM 的对抗攻击对全局模型的准确性影响微乎其微,而基于 PGD 的攻击则更为有效。不过,我们也表明,我们的 FAT 策略可以使全局模型足够强大,甚至可以抵御基于 PGD 的攻击。例如,我们的 FAT-PGD 和 FL-mixed-PGD 模型的准确率分别为 81.13% 和 82.60%,而基线 FL 模型的准确率为 91.34%。这意味着准确率降低了 10%,但使用更复杂、更大型的模型可能会缓解这一问题。我们的研究结果表明,FAT 可以提高可持续智能城市应用的安全性和隐私性。我们还表明,可以通过每个客户端的少量数据集训练出稳健的全局模型,这对对抗训练需要大量数据集的传统观点提出了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated Adversarial Training Strategies for Achieving Privacy and Security in Sustainable Smart City Applications
Smart city applications that request sensitive user information necessitate a comprehensive data privacy solution. Federated learning (FL), also known as privacy by design, is a new paradigm in machine learning (ML). However, FL models are susceptible to adversarial attacks, similar to other AI models. In this paper, we propose federated adversarial training (FAT) strategies to generate robust global models that are resistant to adversarial attacks. We apply two adversarial attack methods, projected gradient descent (PGD) and the fast gradient sign method (FGSM), to our air pollution dataset to generate adversarial samples. We then evaluate the effectiveness of our FAT strategies in defending against these attacks. Our experiments show that FGSM-based adversarial attacks have a negligible impact on the accuracy of global models, while PGD-based attacks are more effective. However, we also show that our FAT strategies can make global models robust enough to withstand even PGD-based attacks. For example, the accuracy of our FAT-PGD and FL-mixed-PGD models is 81.13% and 82.60%, respectively, compared to 91.34% for the baseline FL model. This represents a reduction in accuracy of 10%, but this could be potentially mitigated by using a more complex and larger model. Our results demonstrate that FAT can enhance the security and privacy of sustainable smart city applications. We also show that it is possible to train robust global models from modest datasets per client, which challenges the conventional wisdom that adversarial training requires massive datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1