最大化海上无线网络中的无人机覆盖范围:多代理强化学习方法

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-11-16 DOI:10.3390/fi15110369
Qianqian Wu, Qiang Liu, Zefan Wu, Jiye Zhang
{"title":"最大化海上无线网络中的无人机覆盖范围:多代理强化学习方法","authors":"Qianqian Wu, Qiang Liu, Zefan Wu, Jiye Zhang","doi":"10.3390/fi15110369","DOIUrl":null,"url":null,"abstract":"In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently cover the target area in ocean data monitoring tasks. First, we propose a multiagent deep reinforcement learning (DRL)-based path-planning method for multiple UAVs to perform efficient coverage tasks in a target area in the field of ocean data monitoring. Additionally, the traditional Multi-Agent Twin Delayed Deep Deterministic policy gradient (MATD3) algorithm only considers the current state of the agents, leading to poor performance in path planning. To address this issue, we introduce an improved MATD3 algorithm with the integration of a stacked long short-term memory (S-LSTM) network to incorporate the historical interaction information and environmental changes among agents. Finally, the experimental results demonstrate that the proposed MATD3-Stacked_LSTM algorithm can effectively improve the efficiency and practicality of UAV path planning by achieving a high coverage rate of the target area and reducing the redundant coverage rate among UAVs compared with two other advanced DRL algorithms.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"10 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing UAV Coverage in Maritime Wireless Networks: A Multiagent Reinforcement Learning Approach\",\"authors\":\"Qianqian Wu, Qiang Liu, Zefan Wu, Jiye Zhang\",\"doi\":\"10.3390/fi15110369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently cover the target area in ocean data monitoring tasks. First, we propose a multiagent deep reinforcement learning (DRL)-based path-planning method for multiple UAVs to perform efficient coverage tasks in a target area in the field of ocean data monitoring. Additionally, the traditional Multi-Agent Twin Delayed Deep Deterministic policy gradient (MATD3) algorithm only considers the current state of the agents, leading to poor performance in path planning. To address this issue, we introduce an improved MATD3 algorithm with the integration of a stacked long short-term memory (S-LSTM) network to incorporate the historical interaction information and environmental changes among agents. Finally, the experimental results demonstrate that the proposed MATD3-Stacked_LSTM algorithm can effectively improve the efficiency and practicality of UAV path planning by achieving a high coverage rate of the target area and reducing the redundant coverage rate among UAVs compared with two other advanced DRL algorithms.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15110369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15110369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在海洋数据监测领域,无人飞行器(UAV)的协同控制和路径规划对于提高数据收集效率和质量至关重要。在本研究中,我们重点关注如何在海洋数据监测任务中利用多架无人飞行器高效覆盖目标区域。首先,我们提出了一种基于多代理深度强化学习(DRL)的路径规划方法,用于多架无人机在海洋数据监测领域的目标区域执行高效覆盖任务。此外,传统的多代理双延迟深度确定性策略梯度(MATD3)算法只考虑代理的当前状态,导致路径规划性能不佳。为了解决这个问题,我们引入了一种改进的 MATD3 算法,该算法集成了堆叠式长短期记忆(S-LSTM)网络,以纳入代理之间的历史交互信息和环境变化。最后,实验结果表明,与其他两种先进的 DRL 算法相比,所提出的 MATD3-Stacked_LSTM 算法能够实现对目标区域的高覆盖率,并降低无人机之间的冗余覆盖率,从而有效提高无人机路径规划的效率和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing UAV Coverage in Maritime Wireless Networks: A Multiagent Reinforcement Learning Approach
In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently cover the target area in ocean data monitoring tasks. First, we propose a multiagent deep reinforcement learning (DRL)-based path-planning method for multiple UAVs to perform efficient coverage tasks in a target area in the field of ocean data monitoring. Additionally, the traditional Multi-Agent Twin Delayed Deep Deterministic policy gradient (MATD3) algorithm only considers the current state of the agents, leading to poor performance in path planning. To address this issue, we introduce an improved MATD3 algorithm with the integration of a stacked long short-term memory (S-LSTM) network to incorporate the historical interaction information and environmental changes among agents. Finally, the experimental results demonstrate that the proposed MATD3-Stacked_LSTM algorithm can effectively improve the efficiency and practicality of UAV path planning by achieving a high coverage rate of the target area and reducing the redundant coverage rate among UAVs compared with two other advanced DRL algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1