Zeda Yin, Yasaman Saadati, Beichao Hu, Arturo S. Leon, M. H. Amini, Dwayne McDaniel
{"title":"利用超分辨率技术快速生成高保真洪水淹没图","authors":"Zeda Yin, Yasaman Saadati, Beichao Hu, Arturo S. Leon, M. H. Amini, Dwayne McDaniel","doi":"10.2166/hydro.2024.228","DOIUrl":null,"url":null,"abstract":"\n \n Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast high-fidelity flood inundation map generation by super-resolution techniques\",\"authors\":\"Zeda Yin, Yasaman Saadati, Beichao Hu, Arturo S. Leon, M. H. Amini, Dwayne McDaniel\",\"doi\":\"10.2166/hydro.2024.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.228\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.228","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fast high-fidelity flood inundation map generation by super-resolution techniques
Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.