机器学习和数据融合方法用于岩石弹性特性估算和可碎性评估

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-01-04 DOI:10.1016/j.egyai.2024.100335
Yiwen Gong , Ilham El-Monier , Mohamed Mehana
{"title":"机器学习和数据融合方法用于岩石弹性特性估算和可碎性评估","authors":"Yiwen Gong ,&nbsp;Ilham El-Monier ,&nbsp;Mohamed Mehana","doi":"10.1016/j.egyai.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate rock elastic property determination is vital for effective hydraulic fracturing, particularly Young's modulus due to its link to rock brittleness. This study integrates interdisciplinary data for better predictions of elastic modulus, combining data mining, experiments, and calibrated synthetics. We used the microstructural insights extracted from rock images for geomechanical facies analysis. Additionally, the petrophysical data and well logs were correlated with shear wave velocity (Vs) and Young's modulus. We developed a machine-learning workflow to predict Young's modulus and assess rock fracturability, considering mineral composition, geomechanics, and microstructure. Our findings indicate that artificial neural networks effectively predict Young's modulus, while K-Means clustering and hierarchical support vector machines excel in identifying rock and geomechanical facies. Utilizing Microscale thin section analysis in conjunction with fracture modeling enhances our understanding of fracture geometries and facilitates fracturability assessment. Notably, fracturability is controlled by specific geomechanical facies during initiation and propagation and influenced by continuity of geomechanical facies in small depth intervals. In conclusion, this study demonstrates data mining and machine learning potential for predicting rock properties and assessing fracturability, aiding hydraulic fracturing design optimization through diverse data and advanced methods.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000016/pdfft?md5=b10581cb365410162c3c9fef5683fc2f&pid=1-s2.0-S2666546824000016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and Data Fusion Approach for Elastic Rock Properties Estimation and Fracturability Evaluation\",\"authors\":\"Yiwen Gong ,&nbsp;Ilham El-Monier ,&nbsp;Mohamed Mehana\",\"doi\":\"10.1016/j.egyai.2024.100335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate rock elastic property determination is vital for effective hydraulic fracturing, particularly Young's modulus due to its link to rock brittleness. This study integrates interdisciplinary data for better predictions of elastic modulus, combining data mining, experiments, and calibrated synthetics. We used the microstructural insights extracted from rock images for geomechanical facies analysis. Additionally, the petrophysical data and well logs were correlated with shear wave velocity (Vs) and Young's modulus. We developed a machine-learning workflow to predict Young's modulus and assess rock fracturability, considering mineral composition, geomechanics, and microstructure. Our findings indicate that artificial neural networks effectively predict Young's modulus, while K-Means clustering and hierarchical support vector machines excel in identifying rock and geomechanical facies. Utilizing Microscale thin section analysis in conjunction with fracture modeling enhances our understanding of fracture geometries and facilitates fracturability assessment. Notably, fracturability is controlled by specific geomechanical facies during initiation and propagation and influenced by continuity of geomechanical facies in small depth intervals. In conclusion, this study demonstrates data mining and machine learning potential for predicting rock properties and assessing fracturability, aiding hydraulic fracturing design optimization through diverse data and advanced methods.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000016/pdfft?md5=b10581cb365410162c3c9fef5683fc2f&pid=1-s2.0-S2666546824000016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

准确测定岩石弹性特性对有效进行水力压裂至关重要,尤其是杨氏模量,因为它与岩石脆性有关。这项研究整合了跨学科数据,将数据挖掘、实验和校准合成结合起来,以更好地预测弹性模量。我们利用从岩石图像中提取的微观结构知识进行地质力学面分析。此外,岩石物理数据和测井记录与剪切波速度(Vs)和杨氏模量相关联。我们开发了一种机器学习工作流程,用于预测杨氏模量和评估岩石可裂性,同时考虑矿物成分、地质力学和微观结构。我们的研究结果表明,人工神经网络能有效预测杨氏模量,而 K-Means 聚类和分层支持向量机在识别岩石和地质力学面方面表现出色。将微尺度薄片分析与断裂建模结合使用,可增强我们对断裂几何形状的理解,并有助于进行可压裂性评估。值得注意的是,在断裂的形成和传播过程中,可裂性受到特定地质构造面的控制,并受到小深度区间地质构造面连续性的影响。总之,这项研究展示了数据挖掘和机器学习在预测岩石性质和评估可压裂性方面的潜力,通过多样化的数据和先进的方法帮助优化水力压裂设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning and Data Fusion Approach for Elastic Rock Properties Estimation and Fracturability Evaluation

Accurate rock elastic property determination is vital for effective hydraulic fracturing, particularly Young's modulus due to its link to rock brittleness. This study integrates interdisciplinary data for better predictions of elastic modulus, combining data mining, experiments, and calibrated synthetics. We used the microstructural insights extracted from rock images for geomechanical facies analysis. Additionally, the petrophysical data and well logs were correlated with shear wave velocity (Vs) and Young's modulus. We developed a machine-learning workflow to predict Young's modulus and assess rock fracturability, considering mineral composition, geomechanics, and microstructure. Our findings indicate that artificial neural networks effectively predict Young's modulus, while K-Means clustering and hierarchical support vector machines excel in identifying rock and geomechanical facies. Utilizing Microscale thin section analysis in conjunction with fracture modeling enhances our understanding of fracture geometries and facilitates fracturability assessment. Notably, fracturability is controlled by specific geomechanical facies during initiation and propagation and influenced by continuity of geomechanical facies in small depth intervals. In conclusion, this study demonstrates data mining and machine learning potential for predicting rock properties and assessing fracturability, aiding hydraulic fracturing design optimization through diverse data and advanced methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Optimizing catalyst layer composition of PEM fuel cell via machine learning: Insights from in-house experimental data A novel optimization framework for natural gas transportation pipeline networks based on deep reinforcement learning Exploring public attention in the circular economy through topic modelling with twin hyperparameter optimisation Adaptive control systems for dual axis tracker using clear sky index and output power forecasting based on ML in overcast weather conditions Supporting energy policy research with large language models: A case study in wind energy siting ordinances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1