从四氮唑与胺的光诱导生物共轭化学中发现意想不到的环化产物

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-01-08 DOI:10.1021/jacs.3c11574
Juan Zhang, Jinlu Liu, Xianfeng Li, Yunzhu Ju, Yangfeng Li, Gong Zhang* and Yizhou Li*, 
{"title":"从四氮唑与胺的光诱导生物共轭化学中发现意想不到的环化产物","authors":"Juan Zhang,&nbsp;Jinlu Liu,&nbsp;Xianfeng Li,&nbsp;Yunzhu Ju,&nbsp;Yangfeng Li,&nbsp;Gong Zhang* and Yizhou Li*,&nbsp;","doi":"10.1021/jacs.3c11574","DOIUrl":null,"url":null,"abstract":"<p >Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized <i>N</i>-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpected Cyclization Product Discovery from the Photoinduced Bioconjugation Chemistry between Tetrazole and Amine\",\"authors\":\"Juan Zhang,&nbsp;Jinlu Liu,&nbsp;Xianfeng Li,&nbsp;Yunzhu Ju,&nbsp;Yangfeng Li,&nbsp;Gong Zhang* and Yizhou Li*,&nbsp;\",\"doi\":\"10.1021/jacs.3c11574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized <i>N</i>-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.3c11574\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.3c11574","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物共轭化学已成为在温和条件下修饰各种生物分子的有力工具。四氮唑最初被认为是与烯烃进行 1,3-二极环化反应的生物正交光催化剂,后来被证明与羧酸具有更广泛的光活性,可作为一种多功能生物共轭和光亲和标记探针。在这项研究中,我们意外地发现并验证了四唑与伯胺之间的光活性,从而得到了一种新的 1,2,4-三唑环化产物。鉴于功能化 N-杂环在药物化学中的重要性,我们成功地利用这一偶然发现的反应合成了药理相关的 DNA 编码化学库(DELs)和含有 1,2,4-三唑支架的小分子化合物。此外,温和的反应条件和稳定的 1,2,4-三唑连接在光诱导生物共轭方面也有广泛应用,包括分子内肽大环化和模板 DNA 反应交联,以及分子间蛋白质光亲和标记。在四唑标记的蛋白质中发现了赖氨酸侧链上的三唑交联产物,完善了对四唑探针光交联概况的全面了解。总之,这种四氮唑-胺生物键合技术拓展了现有的生物键合工具箱,在药物化学和化学生物学的交界处创造了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unexpected Cyclization Product Discovery from the Photoinduced Bioconjugation Chemistry between Tetrazole and Amine

Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Ion Mobility-Mass Spectrometry Captures the Structural Consequences of Lipid Nanoparticle Encapsulation on Ribonucleic Acid Cargo. Significant Chiral Asymmetry Observed in Neutral Amino Acid Ultraviolet Photolysis Observation of Aromatic B13(CO)n+ (n = 1–7) as Boron Carbonyl Analogs of Benzene Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst Molecular Copper–Anthraquinone Photocatalysts for Robust Hydrogen Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1