Mercè Casas-Prat, Mark A. Hemer, Guillaume Dodet, Joao Morim, Xiaolan L. Wang, Nobuhito Mori, Ian Young, Li Erikson, Bahareh Kamranzad, Prashant Kumar, Melisa Menéndez, Yang Feng
{"title":"风浪气候变化及其影响","authors":"Mercè Casas-Prat, Mark A. Hemer, Guillaume Dodet, Joao Morim, Xiaolan L. Wang, Nobuhito Mori, Ian Young, Li Erikson, Bahareh Kamranzad, Prashant Kumar, Melisa Menéndez, Yang Feng","doi":"10.1038/s43017-023-00502-0","DOIUrl":null,"url":null,"abstract":"Wind-waves have an important role in Earth system dynamics through air–sea interactions and are key drivers of coastal and offshore hydro-morphodynamics that affect communities, ecosystems, infrastructure and operations. In this Review, we outline historical and projected changes in the wind-wave climate over the world’s oceans, and their impacts. Historical trend analysis is challenging owing to the presence of temporal inhomogeneities from increased numbers and types of assimilated data. Nevertheless, there is general agreement over a consistent historical increase in mean wave height of 1–3 cm yr−1 in the Southern and Arctic Oceans, with extremes increasing by >10 cm yr−1 for the latter. By 2100, mean wave height is projected to rise by 5–10% in the Southern Ocean and eastern tropical South Pacific, and by >100% in the Arctic Ocean. By contrast, reductions in mean wave height up to 10% are expected in the North Atlantic and North Pacific, with regional variability and uncertainty for changes in extremes. Differences between 1.5 °C and warmer worlds reveal the potential benefit of limiting anthropogenic warming. Resolving global-scale climate change impacts on coastal processes and atmospheric–ocean–wave interactions requires a step-up in observational and modeling capabilities, including enhanced spatiotemporal resolution and coverage of observations, more homogeneous data products, multidisciplinary model improvement, and better sampling of uncertainty with larger ensembles. Wind-waves have important Earth system impacts. This Review outlines observed and projected changes in wind-waves for global oceans, revealing historic and future increases in wave height across the Southern and Arctic Oceans, but decreases in the North Atlantic and North Pacific.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 1","pages":"23-42"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind-wave climate changes and their impacts\",\"authors\":\"Mercè Casas-Prat, Mark A. Hemer, Guillaume Dodet, Joao Morim, Xiaolan L. Wang, Nobuhito Mori, Ian Young, Li Erikson, Bahareh Kamranzad, Prashant Kumar, Melisa Menéndez, Yang Feng\",\"doi\":\"10.1038/s43017-023-00502-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind-waves have an important role in Earth system dynamics through air–sea interactions and are key drivers of coastal and offshore hydro-morphodynamics that affect communities, ecosystems, infrastructure and operations. In this Review, we outline historical and projected changes in the wind-wave climate over the world’s oceans, and their impacts. Historical trend analysis is challenging owing to the presence of temporal inhomogeneities from increased numbers and types of assimilated data. Nevertheless, there is general agreement over a consistent historical increase in mean wave height of 1–3 cm yr−1 in the Southern and Arctic Oceans, with extremes increasing by >10 cm yr−1 for the latter. By 2100, mean wave height is projected to rise by 5–10% in the Southern Ocean and eastern tropical South Pacific, and by >100% in the Arctic Ocean. By contrast, reductions in mean wave height up to 10% are expected in the North Atlantic and North Pacific, with regional variability and uncertainty for changes in extremes. Differences between 1.5 °C and warmer worlds reveal the potential benefit of limiting anthropogenic warming. Resolving global-scale climate change impacts on coastal processes and atmospheric–ocean–wave interactions requires a step-up in observational and modeling capabilities, including enhanced spatiotemporal resolution and coverage of observations, more homogeneous data products, multidisciplinary model improvement, and better sampling of uncertainty with larger ensembles. Wind-waves have important Earth system impacts. This Review outlines observed and projected changes in wind-waves for global oceans, revealing historic and future increases in wave height across the Southern and Arctic Oceans, but decreases in the North Atlantic and North Pacific.\",\"PeriodicalId\":18921,\"journal\":{\"name\":\"Nature Reviews Earth & Environment\",\"volume\":\"5 1\",\"pages\":\"23-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Earth & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43017-023-00502-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-023-00502-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wind-waves have an important role in Earth system dynamics through air–sea interactions and are key drivers of coastal and offshore hydro-morphodynamics that affect communities, ecosystems, infrastructure and operations. In this Review, we outline historical and projected changes in the wind-wave climate over the world’s oceans, and their impacts. Historical trend analysis is challenging owing to the presence of temporal inhomogeneities from increased numbers and types of assimilated data. Nevertheless, there is general agreement over a consistent historical increase in mean wave height of 1–3 cm yr−1 in the Southern and Arctic Oceans, with extremes increasing by >10 cm yr−1 for the latter. By 2100, mean wave height is projected to rise by 5–10% in the Southern Ocean and eastern tropical South Pacific, and by >100% in the Arctic Ocean. By contrast, reductions in mean wave height up to 10% are expected in the North Atlantic and North Pacific, with regional variability and uncertainty for changes in extremes. Differences between 1.5 °C and warmer worlds reveal the potential benefit of limiting anthropogenic warming. Resolving global-scale climate change impacts on coastal processes and atmospheric–ocean–wave interactions requires a step-up in observational and modeling capabilities, including enhanced spatiotemporal resolution and coverage of observations, more homogeneous data products, multidisciplinary model improvement, and better sampling of uncertainty with larger ensembles. Wind-waves have important Earth system impacts. This Review outlines observed and projected changes in wind-waves for global oceans, revealing historic and future increases in wave height across the Southern and Arctic Oceans, but decreases in the North Atlantic and North Pacific.