Adriána Čelková , Alexander Búcsi , Mária Klacsová , Tomáš Fazekaš , Juan Carlos Martínez , Daniela Uhríková
{"title":"磷酸奥司他韦与模型膜的相互作用","authors":"Adriána Čelková , Alexander Búcsi , Mária Klacsová , Tomáš Fazekaš , Juan Carlos Martínez , Daniela Uhríková","doi":"10.1016/j.bbamem.2024.184273","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Oseltamivir<span><span> belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined </span>partition coefficient<span><span> with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the </span>lipid </span></span></span>bilayer<span> is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the </span></span>zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 3","pages":"Article 184273"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oseltamivir phosphate interaction with model membranes\",\"authors\":\"Adriána Čelková , Alexander Búcsi , Mária Klacsová , Tomáš Fazekaš , Juan Carlos Martínez , Daniela Uhríková\",\"doi\":\"10.1016/j.bbamem.2024.184273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Oseltamivir<span><span> belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined </span>partition coefficient<span><span> with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the </span>lipid </span></span></span>bilayer<span> is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the </span></span>zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.</p></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1866 3\",\"pages\":\"Article 184273\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000527362400004X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000527362400004X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Oseltamivir phosphate interaction with model membranes
Oseltamivir belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined partition coefficient with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the lipid bilayer is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.