Naveed Ahmad, Yi Xu, Faheng Zang, Dapeng Li, Zhenhua Liu
{"title":"植物抗病毒防御系统特化代谢物的进化轨迹。","authors":"Naveed Ahmad, Yi Xu, Faheng Zang, Dapeng Li, Zhenhua Liu","doi":"10.1186/s43897-023-00078-9","DOIUrl":null,"url":null,"abstract":"<p><p>Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"2"},"PeriodicalIF":10.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785382/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants.\",\"authors\":\"Naveed Ahmad, Yi Xu, Faheng Zang, Dapeng Li, Zhenhua Liu\",\"doi\":\"10.1186/s43897-023-00078-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"4 1\",\"pages\":\"2\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-023-00078-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00078-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants.
Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.