基于相干累积差分法的非铁磁性薄金属微米级缺陷检测系统

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2024-01-08 DOI:10.1088/1361-6501/ad1c46
Bingkun Wei, Chen Chen, Runcong Liu, Jinling Yang, Xiaodong Wang
{"title":"基于相干累积差分法的非铁磁性薄金属微米级缺陷检测系统","authors":"Bingkun Wei, Chen Chen, Runcong Liu, Jinling Yang, Xiaodong Wang","doi":"10.1088/1361-6501/ad1c46","DOIUrl":null,"url":null,"abstract":"\n Copper and aluminum foils serve as predominant materials in fluid collectors, and defects within them can significantly impact the electrochemical performance of cells. However, existing methods for detecting defects within non-ferromagnetic thin metals, such as copper and aluminum foils, have several limitations. This study aims to address the need for detecting micrometer-scale defects on 0.1 mm copper foils, aligning with industrial field requirements. We devised an inspection device based on the induced magnetic field detection principle and explored the impact of copper foil undulations on micrometer-scale defect detection using COMSOL modeling. Subsequently, we introduced a coherent cumulative-differential algorithm to effectively mitigate the influences of circuit noise and sampling heave noise on defect signals. Consequently, the signal-to-noise ratios of 100- and 200-micron defect signals were significantly improved by 157% and 234%, respectively. This approach shows promise for detecting micrometer-scale defects in non-ferromagnetic thin metals and lays a robust foundation for future defect identification and inversion endeavors.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"43 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-ferromagnetic thin metal micron-sized defect detection system based on coherent accumulation-difference method\",\"authors\":\"Bingkun Wei, Chen Chen, Runcong Liu, Jinling Yang, Xiaodong Wang\",\"doi\":\"10.1088/1361-6501/ad1c46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Copper and aluminum foils serve as predominant materials in fluid collectors, and defects within them can significantly impact the electrochemical performance of cells. However, existing methods for detecting defects within non-ferromagnetic thin metals, such as copper and aluminum foils, have several limitations. This study aims to address the need for detecting micrometer-scale defects on 0.1 mm copper foils, aligning with industrial field requirements. We devised an inspection device based on the induced magnetic field detection principle and explored the impact of copper foil undulations on micrometer-scale defect detection using COMSOL modeling. Subsequently, we introduced a coherent cumulative-differential algorithm to effectively mitigate the influences of circuit noise and sampling heave noise on defect signals. Consequently, the signal-to-noise ratios of 100- and 200-micron defect signals were significantly improved by 157% and 234%, respectively. This approach shows promise for detecting micrometer-scale defects in non-ferromagnetic thin metals and lays a robust foundation for future defect identification and inversion endeavors.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1c46\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1c46","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜箔和铝箔是流体收集器的主要材料,其中的缺陷会严重影响电池的电化学性能。然而,现有的非铁磁性薄金属(如铜箔和铝箔)缺陷检测方法存在一些局限性。本研究旨在满足检测 0.1 毫米铜箔上微米级缺陷的需求,以符合工业领域的要求。我们设计了一种基于感应磁场检测原理的检测设备,并利用 COMSOL 建模探索了铜箔起伏对微米级缺陷检测的影响。随后,我们引入了相干累积差分算法,以有效降低电路噪声和采样波浪噪声对缺陷信号的影响。因此,100 微米和 200 微米缺陷信号的信噪比分别显著提高了 157% 和 234%。这种方法为检测非铁磁性薄金属中的微米级缺陷带来了希望,并为未来的缺陷识别和反转工作奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-ferromagnetic thin metal micron-sized defect detection system based on coherent accumulation-difference method
Copper and aluminum foils serve as predominant materials in fluid collectors, and defects within them can significantly impact the electrochemical performance of cells. However, existing methods for detecting defects within non-ferromagnetic thin metals, such as copper and aluminum foils, have several limitations. This study aims to address the need for detecting micrometer-scale defects on 0.1 mm copper foils, aligning with industrial field requirements. We devised an inspection device based on the induced magnetic field detection principle and explored the impact of copper foil undulations on micrometer-scale defect detection using COMSOL modeling. Subsequently, we introduced a coherent cumulative-differential algorithm to effectively mitigate the influences of circuit noise and sampling heave noise on defect signals. Consequently, the signal-to-noise ratios of 100- and 200-micron defect signals were significantly improved by 157% and 234%, respectively. This approach shows promise for detecting micrometer-scale defects in non-ferromagnetic thin metals and lays a robust foundation for future defect identification and inversion endeavors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Role of extrinsic factors on magnetoelastic resonance biosensors sensitivity Improved performance of BDS-3 time and frequency transfer based on an epoch differenced model with receiver clock estimation Development of Experimental Device for Inductive Heating of Magnetic Nanoparticles Weakly supervised medical image registration with multi-information guidance A soft sensor model based on an improved semi-supervised stacked autoencoder for just-in-time updating of cement clinker production process data f-CaO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1