Yuzhang Wang, Kanru Cheng, Fan Liu, Jiao Li, Kunyu Zhang
{"title":"基于参数间耦合信息的燃气轮机传感器故障诊断方法研究","authors":"Yuzhang Wang, Kanru Cheng, Fan Liu, Jiao Li, Kunyu Zhang","doi":"10.1088/1361-6501/ad1914","DOIUrl":null,"url":null,"abstract":"Correct and reliable measurement data are crucial for state monitoring, safe operations, health assessment, and life prediction of integrated energy systems (IESs). Sensors are often installed in harsh environments and prone to all kinds of faults; therefore, it is necessary to diagnose sensor faults. A diagnostic method for sensor faults based on gradient histogram distribution (GHD) combined with light gradient boosting machine (LightGBM) is presented in this paper. This proposed method effectively utilizes the coupling information between the relevant parameters. The GHD efficiently extracted the time-domain characteristics of sensor faults and reduced the dimension of eigenvectors. This is beneficial to increasing the diagnostic speed. The kernel density estimation distributions of the gradient and eigenvectors for the sensor with strong correlation are similar, but that for the sensor with weak correlation are completely different. A LightGBM classifier trained based on the feature vectors was utilized to diagnose and classify the sensor faults. The diagnosis accuracy and the diagnosis time of this developed method were examined using the multiple-condition practical operation data of gas turbines in the IES. The experiment results demonstrate that the diagnostic accuracy of five sensor faults using this developed method is all above 90%. The diagnostic time is about 0.47–1.34 s, and is less than 2 s for the gradual faults.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"23 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the fault diagnosis method for gas turbine sensors based on inter-parameter coupling information\",\"authors\":\"Yuzhang Wang, Kanru Cheng, Fan Liu, Jiao Li, Kunyu Zhang\",\"doi\":\"10.1088/1361-6501/ad1914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct and reliable measurement data are crucial for state monitoring, safe operations, health assessment, and life prediction of integrated energy systems (IESs). Sensors are often installed in harsh environments and prone to all kinds of faults; therefore, it is necessary to diagnose sensor faults. A diagnostic method for sensor faults based on gradient histogram distribution (GHD) combined with light gradient boosting machine (LightGBM) is presented in this paper. This proposed method effectively utilizes the coupling information between the relevant parameters. The GHD efficiently extracted the time-domain characteristics of sensor faults and reduced the dimension of eigenvectors. This is beneficial to increasing the diagnostic speed. The kernel density estimation distributions of the gradient and eigenvectors for the sensor with strong correlation are similar, but that for the sensor with weak correlation are completely different. A LightGBM classifier trained based on the feature vectors was utilized to diagnose and classify the sensor faults. The diagnosis accuracy and the diagnosis time of this developed method were examined using the multiple-condition practical operation data of gas turbines in the IES. The experiment results demonstrate that the diagnostic accuracy of five sensor faults using this developed method is all above 90%. The diagnostic time is about 0.47–1.34 s, and is less than 2 s for the gradual faults.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"23 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1914\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1914","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Study of the fault diagnosis method for gas turbine sensors based on inter-parameter coupling information
Correct and reliable measurement data are crucial for state monitoring, safe operations, health assessment, and life prediction of integrated energy systems (IESs). Sensors are often installed in harsh environments and prone to all kinds of faults; therefore, it is necessary to diagnose sensor faults. A diagnostic method for sensor faults based on gradient histogram distribution (GHD) combined with light gradient boosting machine (LightGBM) is presented in this paper. This proposed method effectively utilizes the coupling information between the relevant parameters. The GHD efficiently extracted the time-domain characteristics of sensor faults and reduced the dimension of eigenvectors. This is beneficial to increasing the diagnostic speed. The kernel density estimation distributions of the gradient and eigenvectors for the sensor with strong correlation are similar, but that for the sensor with weak correlation are completely different. A LightGBM classifier trained based on the feature vectors was utilized to diagnose and classify the sensor faults. The diagnosis accuracy and the diagnosis time of this developed method were examined using the multiple-condition practical operation data of gas turbines in the IES. The experiment results demonstrate that the diagnostic accuracy of five sensor faults using this developed method is all above 90%. The diagnostic time is about 0.47–1.34 s, and is less than 2 s for the gradual faults.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.