受水生界面生物运动启发的小型机器人

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mrs Bulletin Pub Date : 2024-01-17 DOI:10.1557/s43577-023-00646-w
Dongjin Kim, Chan Jin Park, Je-Sung Koh, Jonghyun Ha
{"title":"受水生界面生物运动启发的小型机器人","authors":"Dongjin Kim, Chan Jin Park, Je-Sung Koh, Jonghyun Ha","doi":"10.1557/s43577-023-00646-w","DOIUrl":null,"url":null,"abstract":"<p>Bioinspired semiaquatic robots have a remarkable ability to effectively navigate on the water surface. In this article, we explore the design of these biomimetic robotic systems and their body scale-dependent governing forces behind the motion. First, the role of surface tension in enabling hydrophobic objects to remain afloat despite having greater density than water and the effect of morphology, especially the presence of hair-like structures, on the flotation stability are discussed. Then the forces that drive the diverse motions of natural organisms and robots on the air/water interface are investigated. We highlight that while small organisms and robots generate motion utilizing surface tension-based force, large ones primarily exploit inertial drag for propulsion. We show the correlation between the performance and body size in both small and large natural organisms, and how they adjust the shape and speed of legs to optimize the propulsion. To optimize these distinct propulsion forces, the shape and speed of the driving legs are adjusted, thereby maximizing momentum while maintaining high efficiency. This article aims to provide insights on the design and operating mechanism of semiaquatic robots and to bridge the gap between the study of biological locomotion and its mechanical analogs.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"74 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-scale robots inspired by aquatic interfacial biolocomotion\",\"authors\":\"Dongjin Kim, Chan Jin Park, Je-Sung Koh, Jonghyun Ha\",\"doi\":\"10.1557/s43577-023-00646-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioinspired semiaquatic robots have a remarkable ability to effectively navigate on the water surface. In this article, we explore the design of these biomimetic robotic systems and their body scale-dependent governing forces behind the motion. First, the role of surface tension in enabling hydrophobic objects to remain afloat despite having greater density than water and the effect of morphology, especially the presence of hair-like structures, on the flotation stability are discussed. Then the forces that drive the diverse motions of natural organisms and robots on the air/water interface are investigated. We highlight that while small organisms and robots generate motion utilizing surface tension-based force, large ones primarily exploit inertial drag for propulsion. We show the correlation between the performance and body size in both small and large natural organisms, and how they adjust the shape and speed of legs to optimize the propulsion. To optimize these distinct propulsion forces, the shape and speed of the driving legs are adjusted, thereby maximizing momentum while maintaining high efficiency. This article aims to provide insights on the design and operating mechanism of semiaquatic robots and to bridge the gap between the study of biological locomotion and its mechanical analogs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-023-00646-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-023-00646-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受生物启发的半水栖机器人具有在水面上有效航行的非凡能力。在这篇文章中,我们将探讨这些仿生机器人系统的设计及其运动背后与身体尺度相关的支配力。首先,我们讨论了表面张力在疏水物体密度大于水的情况下仍能保持漂浮的作用,以及形态(尤其是毛发状结构的存在)对漂浮稳定性的影响。然后研究了驱动自然生物和机器人在空气/水界面上进行各种运动的力。我们强调,小型生物和机器人利用表面张力产生运动,而大型生物和机器人则主要利用惯性阻力进行推进。我们展示了小型和大型自然生物的性能与体型之间的相关性,以及它们如何调整腿的形状和速度以优化推进力。为了优化这些不同的推进力,需要调整驱动腿的形状和速度,从而在保持高效率的同时使动量最大化。本文旨在深入探讨半水栖机器人的设计和运行机制,并在生物运动及其机械类似物的研究之间架起一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small-scale robots inspired by aquatic interfacial biolocomotion

Bioinspired semiaquatic robots have a remarkable ability to effectively navigate on the water surface. In this article, we explore the design of these biomimetic robotic systems and their body scale-dependent governing forces behind the motion. First, the role of surface tension in enabling hydrophobic objects to remain afloat despite having greater density than water and the effect of morphology, especially the presence of hair-like structures, on the flotation stability are discussed. Then the forces that drive the diverse motions of natural organisms and robots on the air/water interface are investigated. We highlight that while small organisms and robots generate motion utilizing surface tension-based force, large ones primarily exploit inertial drag for propulsion. We show the correlation between the performance and body size in both small and large natural organisms, and how they adjust the shape and speed of legs to optimize the propulsion. To optimize these distinct propulsion forces, the shape and speed of the driving legs are adjusted, thereby maximizing momentum while maintaining high efficiency. This article aims to provide insights on the design and operating mechanism of semiaquatic robots and to bridge the gap between the study of biological locomotion and its mechanical analogs.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
期刊最新文献
The Changing Face of the Cornea in a Case of Juvenile Glaucoma and Subclinical Keratoconus. Bone-inspired dynamically adaptive materials: Current efforts and future opportunities Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method Grain refinement and precipitation strengthening in austenitic steels through Cu addition Posttranslational modifications in spider silk influence conformation and dimerization dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1