{"title":"优化定制轧制坯料:机械和变形特性计算研究","authors":"Rihuan Lu, Shoudong Chen, Meihui Li, Xiaogong Wang, Sijia Zhang, Xianlei Hu, Jingqi Chen, Huagui Huang, Xianghua Liu","doi":"10.1007/s10999-023-09698-x","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, significant attention has been garnered by Tailor Rolled Blanks (TRBs), especially within the automotive industry, attributed to their unique performance characteristics, defined by varying thickness profiles. Nonetheless, the inherent structural complexities of TRBs have led to non-uniform deformation during forming processes, thereby compromising elongation and formability. In this study, an exploration into the deformation of TRBs under uniaxial tensile conditions is elucidated, centering specifically on TRBs transitioning from a thickness of 1–2 mm over a 100 mm span. An assessment of the properties of TRBs following partial annealing is conducted, and mechanisms responsible for thickness variations and the revelation of intrinsic mechanical traits are identified through microstructural examinations. Exploration of the mechanical behavior of TRBs under tension is undertaken, and a methodological approach for optimizing the distribution of mechanical properties is proposed. Validation is achieved through the employment of finite element models, showcasing a performance improvement in the optimized TRBs, with uniform elongation rates surpassing those of non-optimized TRBs by up to 197%. Moreover, an outperformance of uniform-thickness materials by up to 51% is exhibited by the optimized TRBs. These insights are anticipated to bolster the application and efficiency of TRBs across various engineering sectors, aligning coherently with the intelligent design and advanced materials implications within the realm of mechanics and materials in design, as spotlighted by \"The International Journal of Mechanics and Materials in Design\". This exploration intricately intertwines mechanics, material engineering, and intelligent design, offering a comprehensive view that stands to fortify the symbiotic relationship between advanced materials and the design process.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 4","pages":"777 - 804"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing tailor rolled blanks: a computational study on mechanical and deformation properties\",\"authors\":\"Rihuan Lu, Shoudong Chen, Meihui Li, Xiaogong Wang, Sijia Zhang, Xianlei Hu, Jingqi Chen, Huagui Huang, Xianghua Liu\",\"doi\":\"10.1007/s10999-023-09698-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, significant attention has been garnered by Tailor Rolled Blanks (TRBs), especially within the automotive industry, attributed to their unique performance characteristics, defined by varying thickness profiles. Nonetheless, the inherent structural complexities of TRBs have led to non-uniform deformation during forming processes, thereby compromising elongation and formability. In this study, an exploration into the deformation of TRBs under uniaxial tensile conditions is elucidated, centering specifically on TRBs transitioning from a thickness of 1–2 mm over a 100 mm span. An assessment of the properties of TRBs following partial annealing is conducted, and mechanisms responsible for thickness variations and the revelation of intrinsic mechanical traits are identified through microstructural examinations. Exploration of the mechanical behavior of TRBs under tension is undertaken, and a methodological approach for optimizing the distribution of mechanical properties is proposed. Validation is achieved through the employment of finite element models, showcasing a performance improvement in the optimized TRBs, with uniform elongation rates surpassing those of non-optimized TRBs by up to 197%. Moreover, an outperformance of uniform-thickness materials by up to 51% is exhibited by the optimized TRBs. These insights are anticipated to bolster the application and efficiency of TRBs across various engineering sectors, aligning coherently with the intelligent design and advanced materials implications within the realm of mechanics and materials in design, as spotlighted by \\\"The International Journal of Mechanics and Materials in Design\\\". This exploration intricately intertwines mechanics, material engineering, and intelligent design, offering a comprehensive view that stands to fortify the symbiotic relationship between advanced materials and the design process.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 4\",\"pages\":\"777 - 804\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09698-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09698-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Optimizing tailor rolled blanks: a computational study on mechanical and deformation properties
In recent years, significant attention has been garnered by Tailor Rolled Blanks (TRBs), especially within the automotive industry, attributed to their unique performance characteristics, defined by varying thickness profiles. Nonetheless, the inherent structural complexities of TRBs have led to non-uniform deformation during forming processes, thereby compromising elongation and formability. In this study, an exploration into the deformation of TRBs under uniaxial tensile conditions is elucidated, centering specifically on TRBs transitioning from a thickness of 1–2 mm over a 100 mm span. An assessment of the properties of TRBs following partial annealing is conducted, and mechanisms responsible for thickness variations and the revelation of intrinsic mechanical traits are identified through microstructural examinations. Exploration of the mechanical behavior of TRBs under tension is undertaken, and a methodological approach for optimizing the distribution of mechanical properties is proposed. Validation is achieved through the employment of finite element models, showcasing a performance improvement in the optimized TRBs, with uniform elongation rates surpassing those of non-optimized TRBs by up to 197%. Moreover, an outperformance of uniform-thickness materials by up to 51% is exhibited by the optimized TRBs. These insights are anticipated to bolster the application and efficiency of TRBs across various engineering sectors, aligning coherently with the intelligent design and advanced materials implications within the realm of mechanics and materials in design, as spotlighted by "The International Journal of Mechanics and Materials in Design". This exploration intricately intertwines mechanics, material engineering, and intelligent design, offering a comprehensive view that stands to fortify the symbiotic relationship between advanced materials and the design process.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.