利用图形拉普拉斯惩罚滤波器进行空间平滑处理

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2024-01-17 DOI:10.1016/j.spasta.2023.100799
Hiroshi Yamada
{"title":"利用图形拉普拉斯惩罚滤波器进行空间平滑处理","authors":"Hiroshi Yamada","doi":"10.1016/j.spasta.2023.100799","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers a filter for smoothing spatial data. It can be used to smooth data on the vertices of arbitrary undirected graphs with arbitrary non-negative spatial weights. It consists of a quantity analogous to Geary’s <span><math><mi>c</mi></math></span>, which is one of the most prominent measures of spatial autocorrelation. In addition, the quantity can be represented by a matrix called the graph Laplacian in spectral graph theory. We show mathematically how spatial data becomes smoother as a parameter, called the smoothing parameter, increases from 0 and is fully smoothed as the parameter goes to infinity, except for the case where the spatial data is originally fully smoothed. We also illustrate the results numerically and apply the spatial filter to climatological/meteorological data. In addition, as supplementary investigations, we examine how the sum of squared residuals and the effective degrees of freedom vary with the smoothing parameter. Finally, we review two closely related literatures to the spatial filter. One is the intrinsic conditional autoregressive model and the other is the eigenvector spatial filter. We clarify how the spatial filter considered in this paper relates to them. We then mention future research.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Smoothing Using Graph Laplacian Penalized Filter\",\"authors\":\"Hiroshi Yamada\",\"doi\":\"10.1016/j.spasta.2023.100799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers a filter for smoothing spatial data. It can be used to smooth data on the vertices of arbitrary undirected graphs with arbitrary non-negative spatial weights. It consists of a quantity analogous to Geary’s <span><math><mi>c</mi></math></span>, which is one of the most prominent measures of spatial autocorrelation. In addition, the quantity can be represented by a matrix called the graph Laplacian in spectral graph theory. We show mathematically how spatial data becomes smoother as a parameter, called the smoothing parameter, increases from 0 and is fully smoothed as the parameter goes to infinity, except for the case where the spatial data is originally fully smoothed. We also illustrate the results numerically and apply the spatial filter to climatological/meteorological data. In addition, as supplementary investigations, we examine how the sum of squared residuals and the effective degrees of freedom vary with the smoothing parameter. Finally, we review two closely related literatures to the spatial filter. One is the intrinsic conditional autoregressive model and the other is the eigenvector spatial filter. We clarify how the spatial filter considered in this paper relates to them. We then mention future research.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221167532300074X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221167532300074X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种用于平滑空间数据的滤波器。它可用于平滑具有任意非负空间权重的任意无向图顶点上的数据。它包括一个与 Geary's c 类似的量,后者是空间自相关性最显著的测量方法之一。此外,这个量还可以用谱图理论中称为图拉普拉奇的矩阵来表示。我们用数学方法展示了空间数据如何随着一个参数(称为平滑参数)从 0 开始增加而变得更加平滑,以及随着参数增加到无穷大而完全平滑,但空间数据原本完全平滑的情况除外。我们还对结果进行了数值说明,并将空间滤波器应用于气候/气象数据。此外,作为补充研究,我们还考察了残差平方和及有效自由度如何随平滑参数变化。最后,我们回顾了与空间滤波器密切相关的两个文献。一个是本征条件自回归模型,另一个是特征向量空间滤波器。我们将阐明本文所考虑的空间滤波器与它们之间的关系。然后,我们将提及未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Smoothing Using Graph Laplacian Penalized Filter

This paper considers a filter for smoothing spatial data. It can be used to smooth data on the vertices of arbitrary undirected graphs with arbitrary non-negative spatial weights. It consists of a quantity analogous to Geary’s c, which is one of the most prominent measures of spatial autocorrelation. In addition, the quantity can be represented by a matrix called the graph Laplacian in spectral graph theory. We show mathematically how spatial data becomes smoother as a parameter, called the smoothing parameter, increases from 0 and is fully smoothed as the parameter goes to infinity, except for the case where the spatial data is originally fully smoothed. We also illustrate the results numerically and apply the spatial filter to climatological/meteorological data. In addition, as supplementary investigations, we examine how the sum of squared residuals and the effective degrees of freedom vary with the smoothing parameter. Finally, we review two closely related literatures to the spatial filter. One is the intrinsic conditional autoregressive model and the other is the eigenvector spatial filter. We clarify how the spatial filter considered in this paper relates to them. We then mention future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1