Shekhar Priyadarshi, Hao Tian, Alexander Fernandez Scarioni, Silke Wolter, Oliver Kieler, Johannes Kohlmann, Jaani Nissilä, Mark Bieler
{"title":"用于高速光电二极管的低温光纤耦合电光表征平台","authors":"Shekhar Priyadarshi, Hao Tian, Alexander Fernandez Scarioni, Silke Wolter, Oliver Kieler, Johannes Kohlmann, Jaani Nissilä, Mark Bieler","doi":"10.1007/s10762-024-00966-1","DOIUrl":null,"url":null,"abstract":"<p>We have developed a cryogenic characterization platform for ultrafast photodiodes, whose time domain responses are extracted by electro-optic sampling using femtosecond laser pulses in a pump-probe configuration. The excitation of the photodiodes with the pump beam and the electro-optic sampling crystals with the probe beam are realized in a fully fiber-coupled manner. This allows us to use the characterization platform at different temperatures, ranging from cryogenic to room temperature. As an application example, we characterize the time-domain response of commercial p-i-n photodiodes with a nominal bandwidth of 20 GHz and 60 GHz at temperatures of 4 K and 300 K and in a large parameter range of photocurrent and reverse bias. For these photodiodes, we detect frequency components up to approximately 250 GHz, while the theoretical bandwidth of our sampling method exceeds 1 THz. Our measurements demonstrate a significant excitation power and temperature dependence of the photodiodes’ ultrafast time responses, reflecting, most likely, changes in carrier mobilities and electric field screening. Since our system is an ideal tool to characterize and optimize the response of fast photodiodes at cryogenic temperatures, it has a direct impact on applications in superconducting quantum technology such as the enhancement of optical links to superconducting qubits and quantum-accurate waveform generators.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic Fiber-coupled Electro-optic Characterization Platform for High-speed Photodiodes\",\"authors\":\"Shekhar Priyadarshi, Hao Tian, Alexander Fernandez Scarioni, Silke Wolter, Oliver Kieler, Johannes Kohlmann, Jaani Nissilä, Mark Bieler\",\"doi\":\"10.1007/s10762-024-00966-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We have developed a cryogenic characterization platform for ultrafast photodiodes, whose time domain responses are extracted by electro-optic sampling using femtosecond laser pulses in a pump-probe configuration. The excitation of the photodiodes with the pump beam and the electro-optic sampling crystals with the probe beam are realized in a fully fiber-coupled manner. This allows us to use the characterization platform at different temperatures, ranging from cryogenic to room temperature. As an application example, we characterize the time-domain response of commercial p-i-n photodiodes with a nominal bandwidth of 20 GHz and 60 GHz at temperatures of 4 K and 300 K and in a large parameter range of photocurrent and reverse bias. For these photodiodes, we detect frequency components up to approximately 250 GHz, while the theoretical bandwidth of our sampling method exceeds 1 THz. Our measurements demonstrate a significant excitation power and temperature dependence of the photodiodes’ ultrafast time responses, reflecting, most likely, changes in carrier mobilities and electric field screening. Since our system is an ideal tool to characterize and optimize the response of fast photodiodes at cryogenic temperatures, it has a direct impact on applications in superconducting quantum technology such as the enhancement of optical links to superconducting qubits and quantum-accurate waveform generators.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-00966-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00966-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
我们为超快光电二极管开发了一个低温表征平台,其时域响应是通过在泵浦-探针配置中使用飞秒激光脉冲进行电光采样提取的。用泵浦光束激发光电二极管和用探针光束电光采样晶体是以完全光纤耦合的方式实现的。因此,我们可以在从低温到室温的不同温度下使用该表征平台。作为一个应用实例,我们对标称带宽为 20 GHz 和 60 GHz 的商用 p-i-n 光电二极管在 4 K 和 300 K 温度以及较大的光电流和反向偏置参数范围内的时域响应进行了表征。对于这些光电二极管,我们探测到的频率成分高达约 250 GHz,而我们的采样方法的理论带宽超过 1 THz。我们的测量结果表明,光电二极管的超快时间响应与激励功率和温度密切相关,这很可能反映了载流子迁移率和电场屏蔽的变化。由于我们的系统是表征和优化低温下快速光电二极管响应的理想工具,因此它对超导量子技术的应用具有直接影响,例如增强超导量子比特的光链路和量子精确波形发生器。
Cryogenic Fiber-coupled Electro-optic Characterization Platform for High-speed Photodiodes
We have developed a cryogenic characterization platform for ultrafast photodiodes, whose time domain responses are extracted by electro-optic sampling using femtosecond laser pulses in a pump-probe configuration. The excitation of the photodiodes with the pump beam and the electro-optic sampling crystals with the probe beam are realized in a fully fiber-coupled manner. This allows us to use the characterization platform at different temperatures, ranging from cryogenic to room temperature. As an application example, we characterize the time-domain response of commercial p-i-n photodiodes with a nominal bandwidth of 20 GHz and 60 GHz at temperatures of 4 K and 300 K and in a large parameter range of photocurrent and reverse bias. For these photodiodes, we detect frequency components up to approximately 250 GHz, while the theoretical bandwidth of our sampling method exceeds 1 THz. Our measurements demonstrate a significant excitation power and temperature dependence of the photodiodes’ ultrafast time responses, reflecting, most likely, changes in carrier mobilities and electric field screening. Since our system is an ideal tool to characterize and optimize the response of fast photodiodes at cryogenic temperatures, it has a direct impact on applications in superconducting quantum technology such as the enhancement of optical links to superconducting qubits and quantum-accurate waveform generators.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.