{"title":"将中间科学应用于深度学习的案例研究","authors":"","doi":"10.1016/j.eng.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose mesoscience-guided deep learning (MGDL), a deep learning modeling approach guided by mesoscience, to study complex systems. When establishing sample dataset based on the same system evolution data, different from the operation of conventional deep learning method, MGDL introduces the treatment of the dominant mechanisms of complex system and interactions between them according to the principle of compromise in competition (CIC) in mesoscience. Mesoscience constraints are then integrated into the loss function to guide the deep learning training. Two methods are proposed for the addition of mesoscience constraints. The physical interpretability of the model-training process is improved by MGDL because guidance and constraints based on physical principles are provided. MGDL was evaluated using a bubbling bed modeling case and compared with traditional techniques. With a much smaller training dataset, the results indicate that mesoscience-constraint-based model training has distinct advantages in terms of convergence stability and prediction accuracy, and it can be widely applied to various neural network configurations. The MGDL approach proposed in this paper is a novel method for utilizing the physical background information during deep learning model training. Further exploration of MGDL will be continued in the future.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"39 ","pages":"Pages 84-93"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924000365/pdfft?md5=ba1c0afa73b433ee44b436dcc9456e69&pid=1-s2.0-S2095809924000365-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Case Study Applying Mesoscience to Deep Learning\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2024.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose mesoscience-guided deep learning (MGDL), a deep learning modeling approach guided by mesoscience, to study complex systems. When establishing sample dataset based on the same system evolution data, different from the operation of conventional deep learning method, MGDL introduces the treatment of the dominant mechanisms of complex system and interactions between them according to the principle of compromise in competition (CIC) in mesoscience. Mesoscience constraints are then integrated into the loss function to guide the deep learning training. Two methods are proposed for the addition of mesoscience constraints. The physical interpretability of the model-training process is improved by MGDL because guidance and constraints based on physical principles are provided. MGDL was evaluated using a bubbling bed modeling case and compared with traditional techniques. With a much smaller training dataset, the results indicate that mesoscience-constraint-based model training has distinct advantages in terms of convergence stability and prediction accuracy, and it can be widely applied to various neural network configurations. The MGDL approach proposed in this paper is a novel method for utilizing the physical background information during deep learning model training. Further exploration of MGDL will be continued in the future.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"39 \",\"pages\":\"Pages 84-93\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000365/pdfft?md5=ba1c0afa73b433ee44b436dcc9456e69&pid=1-s2.0-S2095809924000365-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000365\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000365","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Case Study Applying Mesoscience to Deep Learning
In this paper, we propose mesoscience-guided deep learning (MGDL), a deep learning modeling approach guided by mesoscience, to study complex systems. When establishing sample dataset based on the same system evolution data, different from the operation of conventional deep learning method, MGDL introduces the treatment of the dominant mechanisms of complex system and interactions between them according to the principle of compromise in competition (CIC) in mesoscience. Mesoscience constraints are then integrated into the loss function to guide the deep learning training. Two methods are proposed for the addition of mesoscience constraints. The physical interpretability of the model-training process is improved by MGDL because guidance and constraints based on physical principles are provided. MGDL was evaluated using a bubbling bed modeling case and compared with traditional techniques. With a much smaller training dataset, the results indicate that mesoscience-constraint-based model training has distinct advantages in terms of convergence stability and prediction accuracy, and it can be widely applied to various neural network configurations. The MGDL approach proposed in this paper is a novel method for utilizing the physical background information during deep learning model training. Further exploration of MGDL will be continued in the future.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.