P Raghavendra, Y Chandra Sekhar, G Vishwakshan Reddy, P Sri Chandana, L Subramanyam Sarma
{"title":"还原型氧化石墨烯 (RGO) 上异质外延生长的 Pt@Au 核壳双金属纳米粒子作为碱性介质中氧还原反应的电催化剂","authors":"P Raghavendra, Y Chandra Sekhar, G Vishwakshan Reddy, P Sri Chandana, L Subramanyam Sarma","doi":"10.1088/2043-6262/ad1a9d","DOIUrl":null,"url":null,"abstract":"The core-shell structured Pt@Aubimetallic nanoparticles (NPs) were decorated on the reduced graphene oxide (RGO) surface by a heteroepitaxial growth method. The morphological details of Pt@Au/RGO core/shell bimetallic NPs were assessed by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS). Electron microscopy results revealed that Pt@Au particles of 3.4 nm were firmly attached to RGO sheets. The electrochemical response of Pt@Au/RGO nanostructured electrocatalyst was measured through cyclic voltammetry (CV) at room temperature in 0.1 M KOH solution. Oxygen reduction reaction (ORR) efficacies of Pt@Au/RGO were evaluated by linear sweep voltammetry (LSV) by rotating catalyst-coated glassy carbon (GC) electrode at different rotation speeds in oxygen saturated 0.1 M KOH solution. The electrochemical activity descriptors (half-wave potential, onset potential, limiting current density) were assessed from ORR polarisation curves. The results revealed that Pt@Au/RGO bimetallic NPs showed enhanced higher catalytic activity towards ORR compared to commercial Pt/C catalyst as well as similarly synthesised Pt/RGO and Au/RGO. The enhanced catalytic activity of Pt@Au/RGO electrocatalyst might result from the core/shell structure with a tiny Pt core and a thin Au shell, as well as the synergistic effects of Au and Pt.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hetero-epitaxial grown Pt@Au core-shell bimetallic nanoparticles on reduced graphene oxide (RGO) as electrocatalyst for oxygen reduction reaction in alkaline media\",\"authors\":\"P Raghavendra, Y Chandra Sekhar, G Vishwakshan Reddy, P Sri Chandana, L Subramanyam Sarma\",\"doi\":\"10.1088/2043-6262/ad1a9d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The core-shell structured Pt@Aubimetallic nanoparticles (NPs) were decorated on the reduced graphene oxide (RGO) surface by a heteroepitaxial growth method. The morphological details of Pt@Au/RGO core/shell bimetallic NPs were assessed by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS). Electron microscopy results revealed that Pt@Au particles of 3.4 nm were firmly attached to RGO sheets. The electrochemical response of Pt@Au/RGO nanostructured electrocatalyst was measured through cyclic voltammetry (CV) at room temperature in 0.1 M KOH solution. Oxygen reduction reaction (ORR) efficacies of Pt@Au/RGO were evaluated by linear sweep voltammetry (LSV) by rotating catalyst-coated glassy carbon (GC) electrode at different rotation speeds in oxygen saturated 0.1 M KOH solution. The electrochemical activity descriptors (half-wave potential, onset potential, limiting current density) were assessed from ORR polarisation curves. The results revealed that Pt@Au/RGO bimetallic NPs showed enhanced higher catalytic activity towards ORR compared to commercial Pt/C catalyst as well as similarly synthesised Pt/RGO and Au/RGO. The enhanced catalytic activity of Pt@Au/RGO electrocatalyst might result from the core/shell structure with a tiny Pt core and a thin Au shell, as well as the synergistic effects of Au and Pt.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad1a9d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad1a9d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hetero-epitaxial grown Pt@Au core-shell bimetallic nanoparticles on reduced graphene oxide (RGO) as electrocatalyst for oxygen reduction reaction in alkaline media
The core-shell structured Pt@Aubimetallic nanoparticles (NPs) were decorated on the reduced graphene oxide (RGO) surface by a heteroepitaxial growth method. The morphological details of Pt@Au/RGO core/shell bimetallic NPs were assessed by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS). Electron microscopy results revealed that Pt@Au particles of 3.4 nm were firmly attached to RGO sheets. The electrochemical response of Pt@Au/RGO nanostructured electrocatalyst was measured through cyclic voltammetry (CV) at room temperature in 0.1 M KOH solution. Oxygen reduction reaction (ORR) efficacies of Pt@Au/RGO were evaluated by linear sweep voltammetry (LSV) by rotating catalyst-coated glassy carbon (GC) electrode at different rotation speeds in oxygen saturated 0.1 M KOH solution. The electrochemical activity descriptors (half-wave potential, onset potential, limiting current density) were assessed from ORR polarisation curves. The results revealed that Pt@Au/RGO bimetallic NPs showed enhanced higher catalytic activity towards ORR compared to commercial Pt/C catalyst as well as similarly synthesised Pt/RGO and Au/RGO. The enhanced catalytic activity of Pt@Au/RGO electrocatalyst might result from the core/shell structure with a tiny Pt core and a thin Au shell, as well as the synergistic effects of Au and Pt.