为屏幕移动技术准确快速地定位 EBSD 图案中心

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-01-20 DOI:10.1016/j.ultramic.2024.113924
Wei Li , Xingui Zhou , Jingchao Xu , Ruyue Zhang , Lizhao Lai , Yi Zeng , Hong Miao
{"title":"为屏幕移动技术准确快速地定位 EBSD 图案中心","authors":"Wei Li ,&nbsp;Xingui Zhou ,&nbsp;Jingchao Xu ,&nbsp;Ruyue Zhang ,&nbsp;Lizhao Lai ,&nbsp;Yi Zeng ,&nbsp;Hong Miao","doi":"10.1016/j.ultramic.2024.113924","DOIUrl":null,"url":null,"abstract":"<div><p>The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss–Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor. The proposed algorithm was applied to simulated patterns, and yielded an accuracy of measurement of the PCs that was better than <span><math><mrow><mn>4.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> of their resolution while taking only 0.2 s for computations. Moreover, the proposed algorithm has a large radius of convergence that makes it robust to the initial estimate. We also discuss the influence of factors of mechanical instability on its results of calibration during the insertion of the detector, and show that errors in measurements caused by the tilt motion of the camera are related only to the tilt angle of its motion and the detector distance, and are unrelated to the distance moved by it.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113924"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and fast localization of EBSD pattern centers for screen moving technology\",\"authors\":\"Wei Li ,&nbsp;Xingui Zhou ,&nbsp;Jingchao Xu ,&nbsp;Ruyue Zhang ,&nbsp;Lizhao Lai ,&nbsp;Yi Zeng ,&nbsp;Hong Miao\",\"doi\":\"10.1016/j.ultramic.2024.113924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss–Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor. The proposed algorithm was applied to simulated patterns, and yielded an accuracy of measurement of the PCs that was better than <span><math><mrow><mn>4.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> of their resolution while taking only 0.2 s for computations. Moreover, the proposed algorithm has a large radius of convergence that makes it robust to the initial estimate. We also discuss the influence of factors of mechanical instability on its results of calibration during the insertion of the detector, and show that errors in measurements caused by the tilt motion of the camera are related only to the tilt angle of its motion and the detector distance, and are unrelated to the distance moved by it.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"259 \",\"pages\":\"Article 113924\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000032\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的作者利用屏幕移动技术的变形模型,开发了一种准确而快速的方法,用于电子背散射衍射(EBSD)技术中图案中心(PC)的定位。所提出的算法分为两个步骤:(a) 近似:我们利用共线特征点获得 PC 坐标的初始值和缩放因子。(b) 细分:然后构建一个包含三个待解参数的变形函数,选择一个大区域进行全局配准,使用逆合成高斯-牛顿(ICGN)优化目标函数,并获得 PC 和缩放因子的迭代结果。所提出的算法被应用于模拟图案,其 PC 的测量精度优于其分辨率的 4.6×10-6,而计算时间仅为 0.2 秒。此外,所提出的算法具有较大的收敛半径,使其对初始估计具有鲁棒性。我们还讨论了在探测器插入过程中机械不稳定性因素对校准结果的影响,并表明摄像机倾斜运动造成的测量误差只与摄像机运动的倾斜角度和探测器距离有关,而与摄像机移动的距离无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and fast localization of EBSD pattern centers for screen moving technology

The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss–Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor. The proposed algorithm was applied to simulated patterns, and yielded an accuracy of measurement of the PCs that was better than 4.6×106 of their resolution while taking only 0.2 s for computations. Moreover, the proposed algorithm has a large radius of convergence that makes it robust to the initial estimate. We also discuss the influence of factors of mechanical instability on its results of calibration during the insertion of the detector, and show that errors in measurements caused by the tilt motion of the camera are related only to the tilt angle of its motion and the detector distance, and are unrelated to the distance moved by it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Aberration calculation of microlens array using differential algebraic method. Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions. Improved precision and accuracy of electron energy-loss spectroscopy quantification via fine structure fitting with constrained optimization. Workflow automation of SEM acquisitions and feature tracking. Enhancing subsurface imaging in ultrasonic atomic force microscopy with optimized contact force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1